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Abstract—Data replication is widely used in geo-distributed
storage systems, and strong consistency is preferred for cor-
rectness and programming simplicity at the application layer.
To address the inefficiency and insufficiency of the causal
consistency model, a strong consistency model named distributed
context consistency is defined. It explicitly defines the necessary
dependencies among distributed clients to effectively reduce false-
positive dependencies among operations. A consensus algorithm
named CC-Paxos is proposed to implement this distributed
context consistency model. It exploits timestamps for operation
sequencing in distributed contexts and adopts fine-granularity
dependency checking to effectively reduce the number of po-
tential conflicts. Experimental results show that, compared with
implementations using causal+ consistency model in the upper
layer and Egalitarian Paxos in system layer, CC-Paxos can
significantly decreases latency and increases throughput with no
sacrifice on scalability.

Index Terms—Distributed Context; Distributed Context Con-
sistency; Consensus; CC-Paxos

I. INTRODUCTION

Geo-distributed data storage is widely deployed in both

public and private cloud platforms, where data replication

across sites is commonly used for high system throughput,

low latency, and high service reliability. Even though some

Internet services [1], [2] adopt the eventual consistency model

for scalability, applications appreciate stronger consistency for

its simplicity. The weaker consistency provided by the storage

system generally requires service providers or application de-

velopers to implement and guarantee the strong semantics for

application correctness and user experience. Such efforts are

usually laborious and error prone. Therefore, system designers

seek the strongest consistency model that they can provide

under the practical constraints, such as causal+ consistency

[3] and real-time causal consistency [4].

There are two issues in the original causal consistency

model and its variants. First, operations in a single thread of

execution are considered to be in potential causality, and this

causal relationship is transitive. Such consistency definition

forces unintentional order requirements to operations and a-

bates concurrency of operation execution. Second, the original

model lacks capability for applications to specify ordering

between two operations. To address these two issues, this

paper redefines the concept of context, which was originally

introduced as the “thread of execution” and used to track

causal dependencies among a client’s operations [5]. The new

concept is called distributed context, where the execution

environment accommodates one or more clients, from which

operations could be issued.

Based on this new definition, we further propose a strong

consistency model named distributed context consistency,

which allows clients on different sites can share the same

context, and the sequence of operations in the same context

will be enforced. With this consistency model, developers

can avoid unnecessary operational dependencies and explicitly

define the required dependencies in separate clients easily. The

lower-level storage system will ensure the operation sequence

as specified.

System performance is another critical metric for a well-

designed consistent model. To achieve high reliability with

replication, consensus algorithms [6], [7] are commonly adopt-

ed for fault-tolerance. Egalitarian Paxos [8](EPaxos) based

on Paxos is a distributed consensus algorithm without master

node. Exploiting conflict-checking mechanism, EPaxos allows

operations without dependencies to be executed concurrently.

However, it does not aware the consistency requirement at the

application layer. Additionally, during operation processing,

extensive communication is incurred among geographically

distributed replicas, which is especially expensive in wide area

networks. Since usually the same set of replica servers are

involved for both consistency and consensus processing, the

system performance is expected to be improved greatly if these

two processes are combined together.

Based on EPaxos, we design a consensus protocol, named

CC-Paxos, which provides distributed context consistency

model for applications and integrates the processing of system

layer consensus and application layer consistency together.

The context creation and detection are fulfilled on the server

side. Different clients may share the context ID, which can be

assisted by the server, such that clients can propose requests

sharing the same context independently without communicat-

ing with each other.

The followings are the main contributions of this paper: we

a) define the distributed context consistency model; b) present

the design and implementation of distributed context model

named CC-Paxos, which also integrates system layer con-

sensus with application layer consistency; and c) conduct

experiments confirm that CC-Paxos achieves better perfor-

mance in throughput and latency compared with the traditional
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approaches that address consensus and consistency separately

in the system and application layers.

The rest of the paper is organized as follows. We define

distributed context consistency and compare it with other

consistency models in Section II. We describe our protocol

CC-Paxos in Section III. Section IV describes the implemen-

tation of CC-Paxos and its comparison (CEPaxos). Section V

presents experiment results on the throughput and latency of

CC-Paxos with various settings. We review related work in

Section VI and conclude in Section VII.

II. DISTRIBUTED CONTEXT CONSISTENCY

In this section, we introduce the definitions of distributed

context and the distributed context consistency model, then

explain the difference with other consistency models.

A. Definition

Before defining distributed context consistency, its abstrac-

tion model must be first described. There are two basic

operations: read(obj) = val and write(obj, val). They are

equivalent to read and write operations in shared-memory sys-

tems, file systems or key-value data stores. Values are stored in

and retrieved from logical replicas, where each logical replica

hosts the entire data space. In real-world systems, a single

logical replica, or simply referred as replica, could consist of

a set of nodes, located in one or multiple data centers.

A distributed context is the abstraction of the environment in

which operations from a group of clients are issued, correlated,

processed and executed. The ordering of operations in a

distributed context are defined by the following three rules,

denoted by −→:

1) Intra-client ordering: if γ and λ are two operations from

a single client within the same context, then γ −→ λ if

operation γ happens before λ.

2) Inter-client ordering: if γ and λ are two operations from

different clients within the same context, γ −→ λ if the

client states that λ happens after γ.

3) Transitivity: For operations γ, λ and η, if γ −→ λ and

λ −→ η, then γ −→ η.

These rules establish the ordering among operations issued

from different clients in a distributed context. In next section

we will discuss the interface for clients to specify the con-

sistency requirements between inter-client operations. Clients

may also use one or more contexts to control the scope of

their operations for the ordering guarantees they desire.

Distributed context consistency requires that the executing

order of all operations are consistent with the order defined

by the happens-before or happens-after relationship in a dis-

tributed context, −→. In other word, applications can specify

the ordering of their operations explicitly and the storage

system will enforce it. Like many other consistency models,

distributed context consistency allows concurrent operations.

If γ �−→ λ and λ �−→ γ, then γ and λ are concurrent.

Generally, higher degree of operation concurrency improves

system efficiency and performance.

The common way to handle conflicts is to assign an order

to conflicted operations by predefined rules and enforce the

same ordering on all replicas.

B. Distributed Context Consistency vs. Other Consistency
Models

Unlike session consistency, distributed context consistency

not only guarantees the execution order of operations in a

context of a client, but also the execution order of operations

in a context shared by multiple clients on different sites.

A number of consistency models have been defined for

distributed systems. To satisfy strict consistency [9], a read

operation from a location must return the value of the last

write operation to that location. It is almost impractical to

implement the strict consistency model in distributed system.

Sequential consistency [10] requires that “the result of any

execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations

of each individual processor appear in this sequence in the

order specified by its program”, which ensures at least a

global ordering on operations. Between strict consistency

and sequential consistency, there is linearizability [11] which

can be defined as a sequential consistency with real time

constraint by considering a begin time and an end time for

each operation.

Causal [12] and causal+ consistency [3] ensure that the

system respects the causal dependencies between operations.

The main difference between causal consistency and distribut-

ed context consistency lies in how to establish the order of

operations from different clients. For causal or causal+, if a

read operation returns the result of a write, the read operation

causally happens before that write. While distributed context

consistency allows clients to specify the order of operations,

e.g. a read must return a write’s value. These two consistency

models are not mutually exclusive to each other.

FIFO consistency [13] only requires that all processes see

writes from one process in the order they were issued from

that process. Eventual consistency [14] guarantees liveness of

systems but does not guarantee any consistent returning value

from operations before they converge.

The strictness of these models is showed in Figure 1 in

decreasing order. Distributed context consistency falls between

sequential and FIFO consistency, in parallel with Causal and

Causal+.

Fig. 1: The strength of different consistency models.

III. DESIGN

In this paper a distributed context consistency and system

consensus combined mechanism is proposed to provide the

consistent and reliable data storage service, named CC-Paxos.

One strength of distributed context consistency is to allow

clients to specify the order between their operations, therefore

the storage system must provide corresponding interfaces.
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Fig. 2: System architecture.

One way is to assign context-unique sequence numbers to

operations in the same context. The system then commits

these operations based on their sequence numbers. In this

scenario, the applications or the storage system will have to

guarantee the uniqueness of sequence numbers. Each operation

will be assigned with this context-unique sequence number

based on application requirements. In this paper, we propose

a timestamp based design in CC-Paxos, which is simple and

effective.

CC-Paxos combines the consistency model and the con-

sensus algorithm, thus the terminologies of both are valid.

For example, we use requests, commands and operations

exchangeably in this paper.

A. System Model

Figure 2 shows the architecture of a distributed storage sys-

tem across a wide area network using CC-Paxos to guarantee

reliability through consensus as well as distributed context

consistency. There are n replicas R = {R0, R1, ..., Rn−1},
each responsible for handling requests from certain portion

of clients in a location based or load based fashion. Clients

share contexts, such as Client0, Client1 and Client2 share

Context0, Client2 and Client3 share Context1. A client can

be in multiple contexts, e.g., Client2. Meanwhile, a client

(Client4) can own a context to itself. The operations from

the same context, represented by the same type of lines in the

figure, will be sequenced by replicas.

Replicas play different roles for different requests, such as

leader, acceptor or learner. Upon receiving a request from a

client, replica r becomes the leader for that request. r checks

its context ID and timestamp, appoints an unused request

processing instance for this request. The instance will be

assigned with an ID to represent its order in the overall request

processing queue. This instance ID will have to be agreed by

all replicas to prevent conflicts. In case one replica has already

assigned the same ID to a different request, voting will become

necessary. Replica r∗, r∗ ∈ {R−r}, plays the role of acceptor

to update dependency sets and vote for election. The outcome

of each used instance is that all the non-fault replicas agree on

a single consistent request, which is called that the request is

chosen as the value for the instance. The leader replies to the

client with the context ID and/or the timestamp if required.

Here, a request being chosen also means that its position in

the request sequence is determined, even though some replicas

may not necessarily know about it. These replicas are learners

of this request. Learner replicas learn the result, and they

will commit the request in order, when the operation from

the application actually executes. After acknowledgment of

committing, the leader will send the confirmation to the client.

B. Client Library and Interface

The CC-Paxos client library provides a simple and s-

traightforward programming interface, including creating and

destroying contexts, read and write objects within contexts.

These are quite similar to existed interfaces except that all

functions take a context argument, used by clients to identify

the context they are sharing. The storage system uses context

to organize operations from geographically distributed clients

and uses timestamp for sequencing.

To provide distributed context consistency, the interface has

an additional pair of read and write operations, shown as the

following:

1) value←− dcc read(obj, cxt, timestamp)
2) bool←− dcc write(obj, value, cxt, timestamp)

These two APIs allow clients to specify desired timestamps

for given operations, which should be in future of the current

system time. Otherwise, the operation will return with a

failure. An operation with the marked timestamp t should

happen after all operations with marked timestamps eariler

than t in the context. A reserved word NOW marks the

current system time to the operation for further processing.

We choose timestamp for inter-client operation ordering for

two reasons. First, it is feasible to implement the synchronized

global time with limited uncertainty [15]. Second, it is easy

for users to understand and use at the application level.

There are other means to order inter-client operations, such as

giving each operation a sequence number, Such effort requires

clients to maintain global unique numbers that introduces extra

communication burden and programming complexity.

C. The Basic Algorithm

CC-Paxos exploits timestamp for operation sequencing in

distributed contexts and incorporates dependency checking

and conflict resolving in the same communication rounds.

Operations are interrelated in two ways: conflict dependency
and context interference. Conflicts occur when there are two

“simultaneous” operations from different contexts, γ and λ,

writing to the same object, which is called the two writes

conflict with each other. If two operations are in the same

context and γ −→ λ, γ and λ are contextually interfered or

in context interference.

CC-Paxos chooses commands for pre-ordered instances,

attaches attributes for each command, and perfects attributes

during the process of choosing commands for instances. The

attribute consists of the set of commands which the command

contextually interfered with (context dependencies) and the set

of commands which the command conflicts with (conflicting
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dependencies). CC-Paxos ordering the command according to

the two sets.

CC-Paxos consists of two handling phases: the committing

phase and the executing phase. During the committing phase,

CC-Paxos chooses a request for an instance and computes the

dependency set which will be used in the executing phase to

order the execution sequence. The two phases and their error

handling are described in details as following.

Algorithm 1 Pseudocode of CC-Paxos’s commit algorithm

1: procedure PHASE 1: ESTABLISH ORDERING CONSTRAINS
2: Replica L on receiving Request(γ, C, ts) from a client becomes the desig-

nated leader for request γ with predefined time ts in context C:
3: if C == NULL then Cγ ← New(Context)
4: else Cγ ← C
5: end if
6: increment instance number iL ← iL + 1
7: � CfInterfL,γ and CxtDepL,γ are the sets of instance Q.j such

that the request recorded in cmdsL[Q][j] conflict interferes with γ and γ context
depends on respectively.

8: if ts < time.NOW then
9: send error message to client, stop the process

10: else tsγ ← ts, wait until ts
11: end if
12: send Precmmit(γ, Cγ , tsγ) to client
13: seqγ ← 1 +max({cmdsL[Q][j].seq| Q.j ∈ CfInterfL,γ}

⋃{0})
14: cfdepsγ ← CfInterfL,γ

15: cxtdepsγ ← CxtDepL,γ

16: cmdsL[L][iL] ← (γ, seqγ , cfdepsγ , cxtdepsγ , Cγ , tsγ , pre −
accepted)

17: send PreAccept(γ, seqγ , cfdepsγ , cxtdepsγ , Cγ , tsγ , L.iL) to repli-
cas in Γ \ {L}, where Γ is the set of replica in the system

18: Any replica R, on receiving
19: PreAccept(γ, seqγ , cfdepsγ , cxtdepsγ , Cγ , tsγ , L.iL):
20: update cfdepsγ ← cfdepsγ

⋃
CfInterfR,γ

21: update cxtdepsγ ← cxtdepsγ
⋃

CxtDepR,γ

22: cmdsR[L][i]← (γ, seqγ , cfdepsγ , cxtdepsγ , tsγ , pre− accepted)
23: reply PreAcceptOK(γ, seqγ , cfdepsγ , cxtdepsγ , L.iL) to L

24: Replica L (command leader for γ), on receiving N − 1 PreAcceptOK
responses:

25: if received PreAcceptOKs from all replicas in Γ \ {L}, with
seqγ , cfdepsγ and cxtdepsγ the same in all replies then

26: run Commit phase for (γ, seqγ , cfdepsγ , cxtdepsγ) at L.i (Fast
path)

27: else
28: update cfdepsγ ← Union(cfdepsγ from all replies)
29: update seqγ ← max({seqγ of all replies})
30: update cxtdepsγ ← Union(cxtdepsγ from all replies)
31: run Paxos−Accept phase for (γ, seqγ , cfdepsγ , cxtdepsγ) at L.i

(Slow path)
32: end if
33: end procedure

34: procedure PHASE 2: Paxos− Accept
35: Command leader L, for (γ, seqγ , cfdepsγ , cxtdepsγ) at instance L.i:
36: cmdsL[L][iL]← (γ, seqγ , cfdepsγ , cxtdepsγ , accepted)
37: send Accept(γ, seqγ , cfdepsγ , cxtdepsγ , L.i) to at least �N/2� other

replicas in Γ \ {L}
38: Any replica R, on receiving Accept(γ, seqγ , cfdepsγ , cxtdepsγ , L.i):
39: cmdsR[L][i]← (γ, seqγ , cfdepsγ , cxtdepsγ , accepted)
40: reply AcceptOK(γ, L.i) to L
41: Command leader L, on receiving at least �N/2� AcceptOKs:
42: run Commit phase for (γ, seqγ , cfdepsγ , cxtdepsγ) at L.i
43: end procedure

44: procedure COMMIT
45: Command leader L, for (γ, seqγ , cfdepsγ , cxtdepsγ) at instance L.i:
46: cmdsL[L][iL]← (γ, seqγ , cfdepsγ , cxtdepsγ , committed)
47: send commit notification for to client
48: send Commit(γ, seqγ , cfdepsγ , cxtdepsγ , L.i) to all other replicas in

Γ \ {L}
49: Any replica R, on receiving Commit(γ, seqγ , cfdepsγ , cxtdepsγ , L.i) :
50: cmdsR[L][i]← (γ, seqγ , cfdepsγ , cxtdepsγ , committed)
51: end procedure

1) The Committing Phase: The algorithm of the commit-

ting phase is shown in Algorithm 1. Every replica uses its

own command log to record the state of all instances that

it has processed. The committing phase consists of Phase 1,

Phase 2 and Commit, and not all phases are executed for every

command: if the command can be committed through fast path,

it can skip Phase 2; if the command can not meet the fast path

requirement, it must experience the all phases.
Upon receiving a read/write request for command γ from

a client, replica L starts Phase 1 and becomes γ’s leader.

The replica assigns a new context ID to this operation, i.e.

the operation is in its own context and can be executed

concurrently with all the others. If command γ specifies a

time later than the current time, L will put it into the waiting

queue; Error will be returned if the timestamp is earlier than

the current time. L replies a PreCommit message with

γ’s context ID (Cγ)and timestamp (tsγ) to the client and

allocates the next unused instance to the command, attaching

the following attributes:

• cfdepsγ (conflict dependencies) is the list of all instances

that contains commands conflicting with γ;

• cxtdepsγ (context dependencies) is the list of all in-

stances that contains commands that γ depends on within

the same context;

• seqγ is the sequence number used to break conflict

dependency cycles during the execution phase; seqγ is

guaranteed to be larger than the sequence IDs of com-

mands in cfdepsγ .

As the leader, L sends command γ and initial attributes in

a PreAccept message to all replicas R (R ∈ Γ \ {L}, Γ is

the set of all replicas in the system). Receiving PreAccept
message, replicas R updates cfdepsγ , cxtdepsγ and seqγ
according to its own information about commands, then replies

the new attributes to L. If L receives replies from all replicas

R, and all updated attributes are the same, L starts the

Commit phase (called fast path); if the replies are not the

same, γ must be committed through slow path. L updates the

attributes accordingly: cfdepsγ and cxtdepsγ are the union of

counterparts from all replies respectively, seqγ is set to be the

highest seq. Then L starts Phase 2 and tells at least a majority

of replicas to accept these attributes. After getting a majority

of positive replies, L engages on the Commit phase. L changes

the status of γ to be committed, and tells all replicas to commit

the command by a message containing cfdepsγ , cxtdepsγ and

seqγ . All replicas update the attributes and change the status of

γ according to the commit message. Command γ committed

through slow path can be regarded as running classic Paxos

to choose (γ, seqγ , cfdepsγ , cxtdepsγ).
2) The Execution Phase: If command γ has been commit-

ted in instance R.i, in order to execute it, a replica should

follow three steps: building the dependency graph, finding the

strongly connected components and topological sorting, and

executing in the verse topological order.
Building the dependency graph: add γ and all commands

in instances from γ’s cfdepsγ and cxtdepsγ as nodes, with

directed edges from γ to these nodes, repeating this process
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recursively for all of γ’s dependencies (both conflict depen-

dencies and context dependencies).

Finding the strongly connected component and topologi-
cal sorting: several algorithms can compute strongly connect-

ed components in linear time, we use Tarjan’s algorithm [16]

in CC-Paxos to find the strongly connected components, and

then sort them topologically.

Executing in the verse topological order: In the verse

topological order, for each the strongly connected components:

1 Sort all commands in the strongly connected component

by their sequence number, which generates a command

sequence called CDsequence;

2 For each context cxtx (which is the context number of at

least one command in CDsequence), find all commands

whose context ID is cxtx in CDsequence, and order them

in timestamps increasingly on their previous locations,

which does not affect the location of other commands

that have different context IDs.

3 Execute every un-executed command according to the

order in CDsequence, marking

3) Failure Tolerance: After receiving the PreCommit reply

for the previous request, a client can propose the next. When

the command is executed, the client will receive a Commit

message.

If a client fails or goes offline after sending a request, the

request will be executed and when the client recovers later, it

will learn the outcome. If abnormal situation happens during

the process of handling a request due to network or some other

problems but the replica failure, the system can not commit

the request in a normal way, the leader replica will send a

commit failure message and ask the client to re-propose or

give up the request. The leader replica sets a null operation

in the failed instance, marks it as executed and informs other

replicas. In this way, CC-Paxos can avoid that an abnormal

request blocking the execution of committed requests.

If a replica fails, it can recover according to the log

which persists states of all instance they have seen no matter

committed or not to disk. Then the failed replica communicates

with other normal replicas to learn the committed instances

and indicates other replicas to learn instances that have been

committed in this replica. For an uncommitted instance, its

leader replica will restart the commit phase.

IV. IMPLEMENTATION CONSIDERATION

We implement CC-Paxos in Go language and decided to

use TCP as the transport protocol in our implementation. For

each command originated from a client, we record its context

number and timestamp.

A. Recording Context Information

In order to compute context dependency, we use the map
structure in Go to hold the information of every context,

which is stored as a <contextID, instances> pair in the map.

The instances is a list of instances which share the same

context ID as contextID. An instance includes a command,

a leader replica, and an instance ID. Since the context ID

and timestamp of an instance are the same as those of its

command, we use them exchangeably in this paper. The

instances in a context is sorted by the timestamp in ascending

order. Whenever a replica Ri sees a new instance I with

context ID CI , it puts the information of this instance into

the instances associated with CI in the map. The size of the

map grows as the replica handles more instances, so cleanup

is necessary. The instances with command finished execution

can be removed. Since instances is sorted, cleanup based on

timestamp is straightforward.

B. Keeping the Dependency Set Small
One challenge in our protocol is that, the dependency sets of

arriving request may (cfdeps and cxtdeps) grow over time. To

efficiently store and transmit cxtdeps, we should keep cxtdeps
as small as possible.

For each instance, cxdeps can only include the nearest

context dependency: the instance number R.i with timestamp

ts, R.i’s context must be the same with γ, and ts is smaller

than tsγ but is the biggest the system has already known in

this context. For an instance, its leader replica sends attributes

of the instance to other replica. The other replicas find the

instance’s nearest context dependency that they have seen, and

then reply the nearest context dependency to leader replica

in PreAcceptOK message. After receiving N-1 PreAcceptOK
messages, leader replica picks out the instance whose times-

tamp is the biggest in the PreAccetOKs and leader replica’s

cxtdeps, and the chosen instance is the only element in

cxtdeps when the instance is committed.

C. The Comparison Target
We compare CC-Paxos against the implementation of causal

consistency plus EPaxos (or CEPaxos in short). We choose

causal+ consistency [3] and EPaxos [8] as the comparison

target, because they offer strong consistency models and

consensus protocols. More importantly, they perform the best

in practice to the best of our knowledge.
The comparison target, CEPaxos, adopts EPaxos to guar-

antee system consensus and handle conflicts at the system

layer. Clients of CEPaxos achieve causal+ consistency by

dispatching requests at the application layer: 1) All clients send

requests that have causal dependencies to one client selected

as the consistency leader. Other dependency-free requests are

sent to the replica servers directly. 2) The consistency leader

maintains request queues, each corresponding to a group of

causally related requests, which is named as causal group, or

CG in short. When receiving a request, the leader client puts it

into the corresponding queue. 3) Request from different queues

are processed concurrently. Requests from the same queue are

processed in the order of their causal dependencies. Specifical-

ly, one request is processed after successful executions of all

its parents. For fair comparison, we also implement CEPaxos

in Go language.

V. EVALUATION

This section presents the evaluation result of CC-Paxos and

CEPaxos.
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Fig. 3: The throughput of CEPaxos with
the variable causal groups number, the
self-interference rate 50% and the key
number 64.

Fig. 4: The throughput of CC-Paxos and
CEPaxos with different self-interference
rates.

Fig. 5: The throughput of CC-Paxos and
CEPaxos with different key group size.

Fig. 6: The throughput of CC-Paxos
and CEPaxos with varying number of
contexts.

A. Experimental Setup

The experiments are conducted on a cluster of machines

with Intel Pentium Dual-Core E5400 @2.70 GHz CPU, 16 GB

Memory and CentOS 6.2 OS. The network between replicas

and clients/replicas is configurable to simulate various deploy-

ment scenarios. In practice replicas are usually distributed over

WAN, while a client and its local replicas are within the same

LAN. LAN is set to have bandwidth of 1,000 Mbps and latency

of 0.1 ms, and for WAN these are set to 2 Mbps and 1 ms

respectively.

For both CC-Paxos and CEPaxos, clients send read/write

requests to replicas, with request containing the following

information: 1) an 8-bit operation type with value of read or

write; 2) key in 64 bits; and 3) value in 64 bits. The request

of CC-Paxos includes two more variables in the command:

context ID and timestamp, both in 64 bits.

B. Workloads

Clients in CC-Paxos and CEPaxos generate dynamic work-

load. Clients choose the read or write operation randomly,

because in distributed consistency scenarios like CC-Paxos and

CEPaxos, reads and writes are typically handled in the same

fashion. One of the most important characteristics of work-

loads are the interference ratio and the conflict ratio among

commands. They are respectively defined as the possibility of

two commands belong to the same context and the possibility

of two commands targeted at the same key. These two ratios

are determined by the number of contexts, the number of keys

and the distributions of context and key in commands.

We set up N replicas with M clients, C = {C0, C1, · · · ,
CM−1}. A set of P contexts is Cxt = {Cxt0, Cxt1, · · · ,
CxtP−1}, and each context is related to a key group. Con-

sequently there are P key groups, KG = {KG0,KG1, · · · ,
KGP−1}. For a key group, K keys are randomly selected

out of all keys. A context is shared among T different clients

Fig. 7: Median, 90%ile and 99%ile execution latency of CC-Paxos and CEPaxos with
different self-interference rates.

Fig. 8: Median, 90%ile and 99%ile executing latency of CC-Paxos and CEPaxos with
various size of key group.

chosen out of C, and this context is also called the clients’ des-

ignated context. Each client has only one designated context.

In CEPaxos, P represents the number of causal groups.

When a client generates a command, its context and key are

selected as follows. X is an integer between 0 and 100. For

each request, an integer is generated from 0 to 100 at random

and if the integer is less or equal than X , the command’s

context is set to the client’s designated context, and its key is

picked from the key group randomly. Otherwise, the request

is context-free and a random key from the whole key set is

assigned to the command. X% is called as the self-interference
rate and it can be derived that the interference ratio equals to
(X%)2

P . Meanwhile, the conflict ratio equals to 1
P∗K .

During the experiment, clients send requests in an open loop

[17]. Replicas reply to clients only after executing requests.

The system throughput is measured at the client side as it

receives the reply. The latency is defined as the time between

sending the request and receiving the reply from the replica.

We also evaluate the median, 90%ile and 99%ile executing

latency of all requests for thorough study of the performance.

When we evaluate latency, clients send 64000 requests in total.

We configure 20 clients per context during the experiments.

Fig. 3 shows the throughput of CEPaxos with 50% self-

interference rate. We set the number of context group to 1, 2,

and 4, so the interference rate of these context groups are 25%,

12.5% and 6.25% respectively. It can be seen that each trace

consists of two phases and the performance of the first phase

(0-50 seconds in X-axis) is much higher than the later one.

The reason is that when all requests arrive at the beginning,

there are limited dependency between these new requests and

these causal dependency-free requests are handled quickly

concurrently. After these requests are handled, the remaining

requests are strictly ordered by their causal dependency within

each causal group. The latter phase represents the stable and

accurate throughput performance of CEPaxos. This phase is

the research focus of this paper.

C. The Self-interference Rate

It is expected that the self-interference rate has major

effect on the performance of both CC-Paxos and CEPaxos.

Higher self-interference rate will result in worse performance
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Fig. 9: Median, 90%ile and 99%ile execution latency of CC-Paxos and CEPaxos with
varying number of contexts.

in both throughput and latency. To present the effect of self-

interference, we set the number of contexts and the size of

key group to 4 in this set of experiments.

Fig. 4 and Fig. 7 show the throughput and detailed exe-

cution latency of CC-Paxos and CEPaxos with various self-

interference rate. The results meet our expectation. In Fig. 4

the throughput of CEPaxos plunges with the self-interference

rate grows from zero to 10%. The self-interference rate of 0%

means that requests are all dependency-free and can be execut-

ed concurrently. In this scenario, the throughput of CC-Paxos

is 0.891% less than that of CEPaxos, because CC-Paxos has

slightly more overhead on computing request dependency set

in committing phase and building request dependency graph

in execution phase. For non-zero self-interference rates, the

causal constraints on the request order limit the performance

of CEPaxos significantly.

In general, the throughput of CC-Paxos significantly outper-

forms CEPaxos owing to the efficient processing of concurrent

requests. CC-Paxos’s performance is relatively stable with the

increasing self-interference rate.

For the median latency, CC-Paxos starts to outperform

CEPaxos at the self-interference rate between 50% to 60%.

While for the 90%ile and 99%ile latency, CC-Paxos achieves

better performance even with self-interference at 10%. CC-

Paxos consistently performs better in latency than CEPaxos.

D. The Size of Key Group

We also examine how the number of keys K in each key

group affects system performance. In this set of experiments,

we set the number of contexts P to one or four for comparison,

and set the self-interference rate X to 70%.

Fig. 5 and Fig. 8 show the influence of K on throughput

and latency of CC-Paxos and CEPaxos respectively. It is

obvious that with different number of contexts, the through-

put and latency performance of both algorithms improves

as K increases. Both algorithms perform better with higher

number of contexts. This is because with more keys in key

groups and more contexts, the targeted keys of the com-

mands become more spread, resulted in decreased confliction

rate. Thus the average conflict dependencies among requests

decreases, which reduces the times to recursively compute

conflict dependency set and building dependency graph, and

more importantly, reduces the coordination among clients and

replicas for consistency guarantee.

Shown in Fig. 5, the throughput of CC-Paxos consistently

performs better. With 4 contexts, the throughput of CC-Paxos

is about 17% higher than that of CEPaxos. The performance

difference increases to 116% with the number of context of

1. Such performance gain is achieved by the efficiency in

detecting concurrently executable requests.

Fig. 8 illustrates the median, 90%ile and 99%ile execution

latency of both algorithms. CC-Paxos performs better than

CEPaxos regardless the number of keys in key groups and

the number of contexts.

E. The Number of Contexts

As shown before, the number of contexts P influences the

effect of the interference rate and the conflict rate. In this

section we directly measure the effect of P on the system

performance. We set the interference rate and the size of key

groups to 70% and 64 respectively.

Fig. 6 shows that when the number of contexts is smaller

than 32, the throughput of CC-Paxos outperforms CEPaxos by

101% to 204%. The less number of contexts, the higher the

advantage in CC-Paxos. In CEPaxos, the causal constraints of

the request ordering is enforced on higher number of requests

thus dramatically limits its performance. CC-Paxos reduces the

number of requests effected by causal constraints, and achieves

higher system throughput. With the number of contexts bigger

than 64, CEPaxos reaches similar throughput as CC-Paxos.

This is because with high number of contexts, the dependency

among requests are lowered sufficiently to have no noticeable

effect on system throughput.

As presented in Fig. 9, the 90%ile and 99%ile latency of

CC-Paxos are much smaller than that of CEPaxos. For median

latency, CC-Paxos is much lower than EPaxos until P grows

to 32 or higher.

VI. RELATED WORK

The key idea of our work is to determine and guarantee the

order of operations required by the logic of application and

system. The related work includes three categories.

Consistency models. Most of the early large-scale data

stores [1], [2] implement eventual consistency in exchange

for low latency. Efforts in [18] provide weak consistency

guarantees to increase system performance. However, weak

consistency guarantees can be elusive and hard to program to

satisfy the complex requirements from applications as pointed

out by [15]. Cassandra [19] implements configurable eventual

and linearizability consistency. PNUTS [20] provides per-key

but not inter-key sequential consistency. COPS [3], a geo-

replicated key-value store, tracks dependency between oper-

ations to provide causal+ consistency. Operation dependen-

cies are also used to provide read-only/write-only transaction

support. COPS improves fault tolerance by exploiting chain

replication within a cluster to address node failures. This

design, however, is not integrated with the consistency control

component, and the performance of causal consistency and

chain replication is not evaluated in experiments. C. Lee, et al.

[21] aim to provide the strongest consistency, linearizability,

through guaranteeing exactly-once semantics. Our proposed

distributed session consistency is weaker than linearizability

but is sufficient for many applications.
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The definition of session is proposed in [5] as an abstraction

for the operation sequence during the execution of an appli-

cation. Whether sessions can be shared across applications,

processes or hosts is left unspecified. In this paper we clearly

define distributed session consistency and propose CC-Paxos

that enforces the defined model.

Consensus protocols. EPaxos [8] achieves high perfor-

mance under certain conditions with a leaderless approach.

With conflict detection mechanism, EPaxos allows commands

with no relationship among each other to be executed in

any order. However, it does not support strong consistency

demanded by the upper layer.

MetaSync [22] is a reliable file synchronization service

and implements a variant of Paxos called pPaxos. pPaxos

provides consistent updates on top of the unmodified APIs

exported by existing services. pPaxos is a client-based Paxos

algorithm that demands no direct client-client or server-server

communication.

Concurrency control in transactions. Transaction in

databases is another area demanding concurrency control.

Sinfonia [23] uses two-phase commit (2PC) with optimistic

concurrency control [24]. Granola [25] exchanges timestamp

between servers to order conflicting transactions. Calvin [26]

uses a separate sequencing layer to assign a deterministic lock-

ing order to all transactions. A distributed database transaction

emphasizes ACID and it is usually issued from a client and

fulfilled at multiple servers. The operations in our discussion

has no requirements on atomicity and isolation, and may be

issued from different clients and should be committed to the

quorum of replicas.

Authors in [27] assumes that a transaction consists of a

collection of atomic pieces and an atomic operation executes

on an independent server. It adopts the similar idea as E-

Paxos and CC-Paxos where dependencies between concurrent

transactions are tracked and are sent to all servers to resolve

conflicts at the commit time.

VII. CONCLUSION

This paper presents CC-Paxos, the first protocol to satisfy

both strong consistency demanded by the application layer and

consensus demanded by the system layer. CC-Paxos achieves

operation sequencing in distributed contexts by exploiting

timestamps and resolves conflicts by dependency checking in

the same communication rounds. Our evaluation demonstrates

that compared with traditional methods completely isolating

the application layer and system layer, CC-Paxos achieves

significantly better performance in latency and throughput,

with very limited overhead and no sacrifice on scalability. At

the same time CC-Paxos also provides simple and elegant APIs

for users to specify the inter-client consistency requirements.
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