
Cross-Platform Resource Scheduling
for Spark and MapReduce on YARN

Dazhao Cheng, Xiaobo Zhou, Senior Member, IEEE, Palden Lama, Jun Wu, and Changjun Jiang

Abstract—WhileMapReduce is inherently designed for batch and high throughput processing workloads, there is an increasing demand

for non-batch processes on big data, e.g., interactive jobs, real-time queries, and stream computations. Emerging Apache Spark fills in

this gap, which can run on an established Hadoop cluster and take advantages of existing HDFS. As a result, the deploymentmodel of

Spark-on-YARN iswidely applied bymany industry leaders. However, we identify three key challenges to deploy Spark on YARN,

inflexible reservation-based resourcemanagement, inter-task dependency blind scheduling, and the locality interference between Spark

andMapReduce applications. The three challenges cause inefficient resource utilization and significant performance deterioration.We

propose and develop a cross-platform resource schedulingmiddleware, iKayak, which aims to improve the resource utilization and

application performance in multi-tenant Spark-on-YARN clusters. iKayak relies on three keymechanisms: reservation-aware executor

placement to avoid long waiting for resource reservation, dependency-aware resource adjustment to exploit under-utilized resource

occupied by reduce tasks, and cross-platform locality-aware task assignment to coordinate locality competition between Spark and

MapReduce applications.We implement iKayak in YARN. Experimental results on a testbed show that iKayak can achieve 50 percent

performance improvement for Spark applications and 19 percent performance improvement for MapReduce applications, compared

to two popular Spark-on-YARN deploymentmodels, i.e., YARN-client model and YARN-cluster model.

Index Terms—Spark-on-YARN, resource scheduling, cross-platform, application performance, reservation-aware executor placement,

dependency-aware resource adjustment, locality-aware task assignment

Ç

1 INTRODUCTION

IN the past few years, MapReduce has revolutionized big
data parallel and distributed processing. MapReduce has

proven to be an effective platform to implement complex
batch applications as diverse as sifting through system logs,
running extract transform load operations, and computing
web indexes. However, its one-pass computation model
makes MapReduce a poor fit for low-latency applications
and iterative computations, such as machine learning and
graph algorithms. Recently, emerging Apache Spark [1]
addresses such limitations by generalizing the MapReduce
computation. Spark enables applications to reliably store
the data in memory. Each Spark application has multiple
processes, called executors, running on the cluster to load
related data in memory on its behalf even when it is not
running any job. It allows applications to avoid costly disk
accesses, which is the key to the high performance of Spark.

Thus, many of today’s big data deployments go beyond
MapReduce by integrating Spark for interactive and stream-
ing computations. However, dividing a unified resource
pool into smaller pools for different applications would
lead to inefficient utilization of resources. A single cluster
manager with dynamic resource allocation may lead to bet-
ter resource utilization. In particular, enterprises prefer to
deploy the emerging Spark applications on their existing
Hadoop clusters in order to leverage the established cluster,
access to existing HDFS dataset, and take advantage of
Hadoop’s security environment. For example, eBay and
Yahoo! [2] employ MapReduce to generate reports and
answer historical queries, while deploying Spark at the same
time to calculate key metrics in real-time. Hadoop YARN [3]
is an emerging cross-platform cluster manager. It allows
multiple computing platforms to co-exist and share resource
on a single cluster and benefit from its fine-grained resource
management scheme. However, we find that there exists a
semantic gap between the reservation-based resource sched-
uling policy [4] of YARN and the dynamic need of Spark
applications, which causes inefficient resource utilization
and poor application performance. Specifically, Spark-on-
YARN raises several key challenges as follows.

First, the reservation-based resource scheduling policy of
YARNmakes tasks with high resource demand very hard to
obtain the required resource in time. Unfortunately, Spark is
such kind of applications. Spark is based on the multi-thread
programming model. This characteristic could lead to a
scenario that a single executor of Spark occupies a large
amount of resource at one time. Thus, an executor with high
resource demand may have to wait a long time for the

� D. Cheng is with the Department of Computer Science, University of
North Carolina at Charlotte, Charlotte, NC 28223.
E-mail: dazhao.cheng@uncc.edu.

� X. Zhou is with the Department of Computer Science, University of
Colorado, Colorado Springs, CO 80918. E-mail: xzhou@uccs.edu.

� P. Lama is with the Department of Computer Science, University of Texas
at San Antonio, 1 UTSA Circle, San Antonio, TX 78249.
E-mail: palden.lama@utsa.edu.

� J. Wu and C. Jiang are with the Department of Computer Science &
Technology, Tongji University, 1239 Siping Road, Shanghai 200092,
China. E-mail: {wujun, cjjiang}@tongji.edu.cn.

Manuscript received 24 June 2016; revised 20 Jan. 2017; accepted 1 Feb. 2017.
Date of publication 14 Feb. 2017; date of current version 17 July 2017.
Recommended for acceptance by M. Caccamo.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2669964

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 8, AUGUST 2017 1341

0018-9340� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

resource reservation, leading to low resource utilization and
poor performance. Even worse, starvation could happen for
some jobs with very large resource demand (e.g., Spark
streaming) when the required resource is to be reserved but
cannot be satisfied in a long period of time.

Second, existing schedulers in YARNdo not recognize the
impact of dependency betweenmap and reduce tasks. As the
cluster resource is reserved and shared with Spark applica-
tions, MapReduce jobs that have already launched reduce
tasks may not be able to have all their map tasks completed
in time. Because the reduce tasks cannot execute their
functions until all map tasks are completed, the launched
reduce tasks will keep occupying the resource and waiting
for the completion of the map tasks. Thus, it incurs low utili-
zation of the resource that is allocated to the reduce tasks.

Third, both MapReduce and Spark applications try to
place tasks or executors alongside their related HDFS blocks
for locality awareness, while they need to negotiate with
YARN for resource scheduling. In particular, jobs could
exhibit poor data locality on the nodes that co-host Spark
executors and MapReduce tasks. For example, when a count
task is computed by a Spark application, the same count
dataset could be needed by a MapReduce job. However, the
MapReduce job may not be able to obtain the resource on
the node with local dataset if the node is mostly occupied
by the Spark executor. Thus, the locality interference due to
the multi-tenant competition hurts performance of both
Spark and MapReduce applications.

In this work, we propose and develop a cross-platform
resource scheduling middleware, iKayak, that aims to
improve the resource utilization and application perfor-
mance in multi-tenant Spark-on-YARN clusters. iKayak
relies on three key designs that leverage time-varying
resource demands of different applications, inter-task
dependency between map and reduce tasks, and cross-
platform locality awareness to tackle the aforementioned
challenges, respectively. We first design and develop a
reservation-aware executor placement mechanism to select
efficient hosting nodes for Spark executors to achieve
shorter reservation time. It aims to satisfy the high resource
demands of executors in a timely manner. We then design
and develop a dependency-aware resource adjustment
mechanism to adaptively control the resource underutilized
by reduce tasks. It allows map tasks to preempt resource
from the reduce tasks. We further design and develop a
cross-platform task assignment mechanism to coordinate
the locality awareness between MapReduce task assignment
and Spark executor placement. It aims to increase local data
access opportunities on the nodes that co-host Spark and
MapReduce applications.

We implement iKayak on a 16-node Hadoop YARN
cluster and evaluate its benefits using the Purdue Map-
Reduce Benchmark Suite (PUMA) and “BigDataBench”
benchmark with datasets collected from real applications.
We compare the performance of iKayak with two popular
Spark-on-YARN deployment models: YARN-client model
and YARN-cluster model. Experimental results by running
different workloads show that iKayak reduces the job com-
pletion time of Spark workloads by 50 and 30 percent com-
pared to the two popular models, respectively. At the same
time, it also reduces job completion time of MapReduce

workloads by 14 and 19 percent while it increases the CPU
utilization by 22 and 15 percent comparedwith the twomod-
els, respectively.

In the rest of paper, Section 2 gives case studies and
motivations of Spark-on-YARN. Section 3 describes the
design and development of iKayak. Section 4 gives imple-
mentation details. Section 5 presents the experimental results.
Section 6 reviews relatedwork. Section 7 concludes the paper.

2 MOTIVATIONS

2.1 Background

Reservation-Based Scheduling in YARN. Compared to the first
generation Hadoop, YARN adopts an fine-grained resource
management, which means applications can configure their
required resources like CPU and memory for individual
tasks when submit jobs. If there are not sufficient resources
available in the cluster as required, the ResourceManagerwill
start to reserve resources on the selected node for the task.
When other tasks on this node are completed, more avail-
able resources can be assigned to the upcoming task. Until
the reservation is satisfied, the released resources on this
node will not allow to be allocated to other applications.
During the reservation process, the new released resources
are accumulated but not allowed to use, which provides a
good resource isolation capability but causes ineffective
resource utilization.

In-Memory Computing with Spark. Spark is an up-and-
coming big-data analytics solution developed by using
highly efficient in-memory computing. It allows applications
to explicitly cache a dataset in memory so that applications
can access data frommemory instead of disk, which can dra-
matically improve the performance. Compared to MapRe-
duce, Spark utilizes multiple threads instead of multiple
processes to achieve parallelism on a single node, avoiding
the memory overhead of several JVMs but leading individual
executors occupying a large amount of resources at one time.
The resource demand (i.e., the number of executors and the
resource request of each executor) of a specific Spark applica-
tion should be configured by users when the job is submitted
to the cluster. Spark can run in two popular modes: Spark-on-
Mesos and Spark-on-YARN. Spark-on-Mesos [5] adopts the
“all-or-nothing” resource management policy (e.g., allocating
enough resource at one time or denying the request), which
could cause starvations especially when the cluster is busy.
However, YARNwill reserve the resource instead of denying
application to avoid such starvation.

Spark-on-YARN. In Spark-on-YARN deployment mode,
Spark applications are similar to MapReduce “jobs”. As
shown in Fig. 1, MapReduce runs each task in its own
process. When a task completes, the process goes away. In
Spark, many tasks can run concurrently in a single process
(i.e., executor), and this process sticks around for the
lifetime of the Spark application, even when no jobs are
running. Thus, MapReduce does not suffer from the
reservation-based scheduling policy since the reservation
periods of most map/reduce tasks are very short due to
their small resource demands. However, Spark applications
with huge resource demands of individual containers can
suffer from too long resource reservation period under the
current resource scheduling policy of YARN.

1342 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 8, AUGUST 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

2.2 Case Study and Challenges

Although Spark-on-YARN provides good integration with
YARN’s cluster-wide resource management policies, it
incurs significant challenges due to the different characteris-
tics of the two programming modes. To illustrate the
inefficiency caused by the hybrid deployment, we conduct
a case study on a (Spark+MapReduce)-on-YARN cluster
composed of six machines. We configured each slave node
with 8 cores and 12 GB Memory, and the block size is set to
256 MB in the experiment. In the experiment, a representa-
tive MapReduce application from the PUMA benchmark [6],
i.e., WordCount, is executed with 30 GB input data. Another
representative Spark application, i.e., Logistic Regression [7],
is executed with 10 GB input data from Wikipedia. The
resource requirements of map and reduce tasks are config-
ured to 2 cores and 2 GB memory. The resource requirement
of individual executors is configured to 6 cores and 8 GB
memory. We measured the different task completion times
for various applications and observed the resource utiliza-
tions on the hybrid platform as follows.

Ineffective Resource Utilization. Fig. 2 shows the details of
the resource scheduling diagram on a slave node during a
short time window. When a Spark executor request is sub-
mitted at 20th second, ResourceManager finds there is no
enough available resource on the node. Then ResourceMan-
ager starts to reserve resources for the submitted Spark
application and reject to assign other MapReduce tasks to
the selected node. Fig. 2 shows there exists a large amount
of idle resource after Map 1 and Map 2 are completed. This
is because the resource (i.e., 4 cores) released by Map 1 and
Map 2 is less than the demand of the executor (i.e., 6 cores).
The executor eventually starts to be executed on the node
until Reduce 2 completed, when the resource accumulation
on the node satisfies the demand of the Spark executor.

During this resource scheduling process, we find the
reservation-based resource allocation policy is apparently
ineffective and causes low resource utilization, leading poor
performance of Spark applications as well. Such ineffective
resource scheduling could be even worse if there are strag-
gler tasks appeared on the selected nodes which typically
occupy the resource for a long time period.

Underutilized Reduce Tasks. In the second case, we first run
the MapReduce application solely and then run the Map-
Reduce and Spark applications together on the cluster. Fig. 3
compares the tasks execution differences of MapReduce
application under the two different scenarios. It shows that
the mix deployment significantly increases the number of
map waves for the MapReduce application (i.e., from 5 to 10
waves) and delays the reduce tasks (i.e., from 120 to 300 s).
This is due to the fact that half of the cluster resource is
allocated for the Spark application compared to the sole
MapReduce deployment. In this case, we find the time of
resource occupied by the reduce tasks is almost three times of
the time spent in the soleMapReduce deployment while they
complete the same task. Apparently, the resource reserved
for reduce tasks in the hybrid environment is over-reserved
than its need, leading significant under-utilization of reduce
tasks. Such phenomenon could be even worse when the
reduce tasks are configured to complete inmultiplewaves.

Locality-Missing Assignment. We further observed the
locality awareness of the task assignment in both Map-
Reduce and Spark executions. We find that the map tasks
with data locality achieve 95 percent of the total completed
map tasks when the MapReduce application runs solely in
the dedicated cluster. However, the local map task rate is
reduced to 68 percent when the MapReduce application
is co-hosted with the Spark application. This is due to the
fact that Spark executors typically occupy a large amount of
resource on individual nodes, which significantly obstruct
the locality-aware map task accesses for MapReduce appli-
cation. For example, there are two nodes (i.e., M1 and M2)
in the cluster and each node has 4 cores. Spark executor
requires 3 cores and each map task requires 1 core. The data
storage on M1 and M2 node is different with each other and
then map tasks can be divided into two types, i.e., M1-local
tasks and M2-local tasks. When the Spark executor occupies
a big container (i.e., 3 cores) on the node M1, there is only
1 core for MapReduce task assignment. For map tasks, there
are more free resources (i.e., 4 cores) on M2 node than that
(i.e., 1 core) on M1 node. As MapReduce adopts a “pull-
based” task assignment policy, some M1-local tasks are
scheduled to M2 node. In this case, M1-local tasks that are
assigned on the M2 node miss the locality awareness due to
the competition from the Spark application.Fig. 2. Ineffective resource utilization.

Fig. 1. [Spark+MapReduce]-on-YARN.

Fig. 3. Underutilized reduce tasks.

CHENG ETAL.: CROSS-PLATFORM RESOURCE SCHEDULING FOR SPARK AND MAPREDUCE ON YARN 1343

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

HDFS usually has three data replicas in the cluster, which
may improve the data locality. For example, there may exist
another node having the same data file with M1 node, which
provides the substitutes with locality for M1-local tasks.
However, as the cluster size and the application quantity
expand, such multi-replicas are still too limited and hard to
avoid such locality-missing task assignment. In particular,
both Spark and MapReduce apply Delay Scheduling [8] to
schedule tasks based on the locality preference, i.e., they try
to schedule tasks onto nodes with local data. So such locality
awareness competition between Spark and MapReduce will
make they both suffer from lack of locality awareness even
there aremultiple replicas in the cluster.

2.3 Opportunities

The new feature (i.e., reservation-based resource schedul-
ing) of YARN fits well to deal with the small size Map-
Reduce tasks due to its fine-grained resource management
capability. However, running Spark on YARN incurs signifi-
cant performance deterioration (e.g., inefficient resource uti-
lization, dependency-blind resource allocation and locality-
missing task assignment) due to its special characteristic, i.e.,
huge resource demand of individual executors. While Spark-
on-YARN poses the above challenges, it also opens up new
opportunities. Intuitively, we find three strategies to take the
aforementioned three challenges respectively.

� Spark executors should be placed on the suitable
nodes to satisfy their resource reservations in time,
and avoid too long time waiting and low resource
utilization.

� The resources allocated to reduce tasks should be re-
balanced based on their time-varying demands to
avoid the resource wasting when any Spark applica-
tions is submitted into the cluster.

� The task assignment of both Spark and MapReduce
applications should be optimized to reduce the local-
ity-aware competition while considering the locality
awareness of both Spark andMapReduce applications.

All these motivate us to develop a holistic resource
scheduling approach to improve the cluster utilization and
the application performance in Spark-on-YARN. In next
section, we focus on exploiting these opportunities to opti-
mize the resource scheduling for Spark-on-YARN.

3 IKAYAK DESIGN

iKayak is a cross-platform resource scheduling middle-
ware that aims to optimize the resource management in

Spark-on-YARN clusters. It takes advantage of the differ-
ent resource demand characteristics of Spark and Map-
Reduce applications, and dynamically optimizes resource
scheduling while considering the data locality for both
applications. Fig. 4 shows the architecture of iKayak. It
has three main components: reservation-aware executor
placement, dependency-aware resource adjustment, and
locality-aware task assignment coordination. We briefly
describe their major features.

� Reservation-aware executor placement adaptively places
Spark executors on efficient hosting nodes that can
satisfy high resource demand of individual execu-
tors in a timely manner.

� Dependency-aware resource adjustment dynamically
exploits the resource allocated to reduce tasks to miti-
gate low resource utilization due to resource over
provisioning, especially when reduce tasks are idle
andwaiting for the intermediate data frommap tasks.

� Locality-aware task assignment coordination improves
the data locality awareness of both Spark and Map-
Reduce applications so that they can share the
limited local data access opportunities on the multi-
tenant cluster nodes.

3.1 Reservation-Aware Executor Placement

When a Spark job is submitted to the cluster, the placement of
executors is crucial to the application performance and cluster
utilization. We propose and develop a reservation-aware
executor placement mechanism to mitigate the inefficient
resource utilization issue due to high resource demand of
Spark. The key insight is that Spark executors should be
placed on nodes that either have enough available resource or
host small map tasks. Note that reduce tasks usually occupy
resource for much longer time than map tasks. If executors
have to wait for the released resource from reduce tasks,
they should be placed on the nodes that host reduce tasks
approaching completion.

Spark provides two default executor placement schedu-
lers, i.e., SpreadOut andNon-SpreadOut [9], to place executors
on multiple nodes in the cluster. Both of them have no
capability to place executors in a resource reservation aware
manner. When running Spark on YARN, each Spark execu-
tor runs in a YARN container. The SparkApplicationMaster is
responsible to negotiate resource requests with YARN and
find a set of efficient hosts to place and run the executors.
However, YARN does not have the capability to recognize
efficient worker nodes for Spark applications because it
was originally designed for MapReduce computations.
MapReduce schedules a container and fires up a JVM for
each task, while Spark hosts multiple tasks within the
same container for multi-threading. Correspondingly,
the resource demand of an individual container for Spark is
much more than that of an individual task for MapReduce.
So the default “pull” based task scheduling approach for
MapReduce jobs does not fit well for the executor placement
of Spark applications.

3.1.1 Resource Reservation Analysis

Resource reserved for Spark executors may come from three
sources on a selected node n, i.e., available free resource

Fig. 4. Overview of iKayak.

1344 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 8, AUGUST 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

(Rn
free), running map tasks (Rn

map), and running reduce tasks
(Rn

reduce). We define an efficient worker node for hosting
a Spark application as the node that can timely satisfy
the resource demand of individual executors of Spark. We
analyze the characteristics of the three sources as follows.

� The free resource on the selected node can be used
for executors immediately after reservation, which is
the most efficient source for executor resource
reservation.

� The resource from running map tasks can be used
for executors in a very short time, i.e., several
seconds or a couple of minutes. This is due to the
fact that map tasks are light weight and generally
small. They will release the occupied resource after
completion.

� The resource from running reduce tasks can be used
for executors in an uncertain time, which is depen-
dent on the reduce task execution progress.

We develop an effective executor placement algorithm
based on the resource reservation awareness of each possi-
ble destination node in the cluster. The algorithm aims to
make the executor run as soon as possible once it is placed
on the selected worker node. As shown in Algorithm 1, it
first selects the efficient worker node with enough free
resource to satisfy the demand of individual executors. If
there is not enough free resource on the node, iKayak selects
the efficient worker node that hosts enough running map
tasks to place executors. If there is still not enough resource,
iKayak finally selects a node that hosts reduce tasks
approaching completion.

Algorithm 1. Reservation-Aware Executor Placement

1: repeat
2: if Any Spark executor requests resource: Rexecutor then
3: Evaluate Rn

free; R
n
map; R

n
reduce; n 2 N

4: if Rn
free � Rexecutor then

5: best ¼ arg maxn½Rn
free�

6: Select the node with maximum free resource
7: end if
8: if Rn

free < Rexecutor � ½Rn
free þRn

map� then
9: best ¼ arg maxn½Rn

free þRn
map�

10: Select the node with maximummap tasks
11: end if
12: if ½Rn

free þRn
map� < Rexecutor then

13: Select the node with minimum waiting time
14: end if
15: Place executor on the selected node
16: end if
17: until Satisfy the demand of Spark

The first two scenarios are straight forward so that we
focus on analysis of the third scenario. When most Map-
Reduce workloads in the cluster are reduce-heavy work-
loads, Spark executors may have to wait the resource
released by reduce tasks to satisfy their demands. In this
scenario, iKayak aims to find the destination nodes with the
reduce tasks approaching completion so that the Spark appli-
cation does not have to wait for long time. Spark executor is
not simply assigned to the first resource slot freed by reduce
tasks since it is no guarantee that other reduce tasks on this

machine can complete in a short time. In order to to find
which reduce tasks are approaching completion, it is neces-
sary to predict the execution progress and remaining time of
reduce tasks.

3.1.2 Estimating Reduce Remaining Time

Although there are many existing prediction approaches for
MapReduce execution, we develop a self-adaptive fuzzy
model to predict a reduce task’s remaining execution time
based on its input size and resource allocation. The fuzzy
model is often used to capture the complex relationship
between resource allocations and a task’s fine-grained
execution progress. However, a task’s progress can be
affected by many factors. First, reduce task progress is not
uniform at different execution phases, e.g., shuffle, sort and
reduce phases. Second, even within the same phase, data
skew among tasks leads to different task execution speed
at different intervals. Finally, co-running tasks may unpre-
dictably interfere with a task’s execution, making the
mapping of resource to task progress variable. Many exist-
ing prediction approaches do not consider the multi-tenant
interferences from other co-existing applications. Therefore,
we design an online self-adaptive fuzzy model based on
real-time measurements.

Fuzzy Model. The reduce task remaining execution time
(i.e., yðtÞ) in the control interval t is represented as the
input-output NARX type (Nonlinear Auto Regressive
model with eXogenous inputs),

yðtÞ ¼ F ðuðtÞ; d; �ðtÞÞ: (1)

F is the relationship between the input variables and the
output variable. The input variables are the current resource
allocation uðtÞ, the job input size d, and the regression vector
�ðtÞ. Here, uðtÞ represents the resource allocation for the
reduce task. The regression vector �ðtÞ contains a number of
lagged outputs and inputs of the previous control periods.
It is represented as

�ðtÞ ¼ ½ðyðt� 1Þ; yðt� 2Þ; . . . ; yðt� nyÞÞ;
ðuðtÞ; uðt� 1Þ; . . . ; uðt� nuÞÞ�T ;

(2)

where ny and nu are the number of lagged values for out-
puts and inputs, respectively. Let r denote the number of
elements in the regression vector �ðtÞ, that is,

r ¼ ny þ nu: (3)

F is the rule-based fuzzy model that consists of Takagi-
Sugeno rules [10]. A rule Fj is represented as

Fj : IF �1ðtÞ is Vj;1; �2ðtÞ is Vj;2; . . . ; and �rðtÞ is Vj;r

uðtÞ is Vj;rþ1 and dj is Vj;rþ2

THEN yjðtÞ ¼ zj�ðtÞ þ hjuðtÞ þ vjdj þ uj:

(4)

Here, Vj is the antecedent fuzzy set of the jth rule, which is
composed of a series of subsets: Vj;1;Vj;2; . . . ;Vj;rþ2. zj, hj
and vj are parameters, and uj is the offset. Their values are
obtained by offline training. Each fuzzy rule characterizes
the nonlinear relationship between allocated resources and
performance for a specific reduce task type.

CHENG ETAL.: CROSS-PLATFORM RESOURCE SCHEDULING FOR SPARK AND MAPREDUCE ON YARN 1345

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

Online Self-Learning. Due to the dynamics of MapReduce
job behaviors (e.g., data skews, different phases and multi-
tenant interferences), we design an online self-learning
module to adapt the fuzzy model. It aims to minimize the
prediction error of the fuzzy model eðtÞ, which is the error
between actual measured job progress and predicted value.

If eðtÞ 6¼ 0, we apply a recursive least squares (RLS)
method to adapt the parameters of the current fuzzy rule.
The technique updates the model parameters as new meas-
urements are sampled from the runtime system. It applies
exponentially decaying weights on the sampled data so that
higher weights are assigned to more recent observations.

We express the fuzzy model output in Eq. (1) as follow:

yðtÞ ¼ fðtÞX þ eðtÞ; (5)

where eðtÞ is the error between the actual output and pre-
dicted output. fðtÞ ¼ ½fT

1 ;f
T
2 ; ::;f

T
r � is a vector composed of

the model parameters.X ¼ ½s1XðtÞ; s2XðtÞ; ::; srXðtÞ�where
sj is the normalized degree of fulfillment or firing strength of
jth rule and XðtÞ ¼ ½�ðtÞT ; uðtÞ�. The parameter vector fðtÞ is
estimated so that the error function in Eq. (6) is minimized.
We apply both the current error eðtÞ and the previous error
eðt� 1Þ to estimate the parameter vector,

Error ¼ eðtÞ2 þ teðt� 1Þ2: (6)

Here t is called the discount factor as it gives higher weights
on more recent samples in the optimization. It determines in
what manner the current prediction error and old errors
affect the update of parameter estimation.

3.1.3 Executor Placement with Reduce Tasks

Based on the estimated remaining time of reduce tasks on
different nodes, we use Algorithm 2 to select the hosting
node for executor placement. As shown in Algorithm 2, we
assume that reduce tasks m, (m 2 M), are running on nodes
n, (n 2 N). We first evaluate the remaining execution times
(i.e., ynm) of reduce tasks on each node based on Eq. (1).
We then sort the remaining execution times of reduce tasks
within each node, and calculate the minimum accumulated
resource (i.e.,

Pm¼x
m¼1 un

m) from reduce tasks on the nth
node to satisfy the executor’s demand. We obtain the
corresponding estimated waiting time (Waitn) to accumu-
late the required resources from the nth node. Finally, the
best candidate to place the executor is the node with the
minimum waiting time.

Algorithm 2. Executor Placement with Reduce Tasks

1: if ½Rn
free þRn

map� < Rexecutor then
2: repeat
3: Evaluate ynm; n 2 N;m 2 M by Eq. (1)
4: Sort remaining times: ynm; n 2 N;m 2 M
5: /*yn1 ;� � � � ;� ynx;� � � � ;� ynM*/
6: if

Pm¼x
m¼1 u

n
m � ½Rexecutor � ðRn

free þRn
mapÞ� then

7: Waitn ¼ argmax
m2x

½ynm�
8: end if
9: until ObtainWaitn; n 2 N
10: end if
11: best ¼ argmin

n2N
½Waitn�

12: Place executor on the selected node

3.2 Dependency-Aware Resource Adjustment

We identify the dependency in Spark-on-YARN at two
levels, i.e., application level and task level. At the application
level, there exists apparent dependency, i.e., resource com-
petition between Spark and MapReduce applications in the
multi-tenant cluster. We measured various MapReduce job
completion times and throughputs while giving different
input data proportions between the Spark and MapReduce
applications. Three MapReduce applications from the
PUMA benchmark [6], i.e., WordCount, Terasort and Grep,
with various input data sizes, were run on the cluster.
Another three representative Spark applications from the
BigDataBench [7] benchmark, i.e., K-means, PageRank and
Index, with the input data sets fromWikipedia, were run on
the cluster too. We quantified the slowdown of MapReduce
job execution by comparing various job completion times to
the job completion time achieved in the dedicated cluster
with sufficient resources (i.e., 100 percent). Fig. 5 shows that
MapReduce execution slows down as its workload propor-
tion decreases in the cluster. It also shows that the through-
put of completed map tasks is significantly lower as
MapReduce workload decreases in the cluster. As a result, at
the task level, the delayed map task executions further affect
the resource demands of the reduce tasks due to the depen-
dency between the map and reduce tasks. We develop
a dependency-aware resource adjustment mechanism to
dynamically control the resource allocated to reduce tasks.

We want to exploit the resource allocated to reduce tasks
after a MapReduce job starts execution, when the cluster
resource allocated to the MapReduce workload changes

because of co-hosting Spark applications in the cluster. We

define a delay factor � ¼ RSpark

RSparkþRMR
to represent the delay of

map task execution caused by the dynamic resource alloca-
tion in the multi-tenant cluster environment. Here, RSpark

and RMR represent the resource allocations for Spark and
MapReduce applications, respectively. The delay factor is
event driven by application submissions.

We use JVM suspend function to suspend the execution of
reduce taskswhen their allocated resource is not fully utilized
due to the delay of their map task execution. The length of
suspension is dependent on the delay factor �. Let T repre-
sent the control interval. The suspension length is calculated
as Tsuspend ¼ �v � T , where v is weight parameter. A larger �
means there is more resource occupied by Spark applications
than that occupied by MapReduce applications so that the
suspension time of reduce tasks should be longer. During the
suspension period, reduce task executions are suspended
and their CPU resource is released. Memory resource cannot

Fig. 5. Impact of workload proportion.

1346 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 8, AUGUST 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

be released immediately because the related data of the pro-
cess is still kept inmemory to avoid data losswhen the reduce
task is resumed. Note that the related data of the suspended
reduce JVM can be swapped out by the operating system
with overhead [11]. Thus, we use Tsuspend ¼ ½�v � u� � T to
determine the suspension length, where u is a threshold value
representing the suspension overhead.

When reduce tasks of a job are suspended, iKayak utilizes
the released resource to assign map tasks of the same job
to the node for improving resource utilization. First, more
intermediate data produced by the map tasks can be used to
accelerate reduce tasks, since reduce tasks need the interme-
diate data for execution. Second, many map tasks are CPU
intensive so that the resource released by suspended reduce
tasks can be utilized bymap tasksmore efficiently.

3.3 Locality-Aware Assignment Coordination

Both Spark and MapReduce applications prefer to assign
executors and tasks together with their data blocks to
achieve local data access. Spark applications are greedy of
the data locality from two aspects. First, executors stick
around for the lifetime of the application, even when no
jobs are running. Second, unlike MapReduce tasks, individ-
ual Spark executors typically occupy a large amount of
resource on the selected worker node. Correspondingly,
there are often locality interference when co-hosting Spark
executors and MapReduce tasks.

The performance of Spark degrades significantly if there
is not enough memory to store the data of a job [1]. Thus,
the resource configuration of Spark executors is more inflex-
ible compared to that of MapReduce tasks. As map tasks are
more sensitive of the data locality than reduce tasks, iKayak
focuses on the locality coordination of map tasks for Map-
Reduce workloads. When the local data access opportunity
is limited for map tasks, ResourceManager has to make a
choice between allowing remote data access and allocating
less resource than its demand but with local data access. For
example, there are 2 cpu cores and 2 GB memory available
on the M1 node. The resource demand of individual Map-
Reduce tasks is configured as 2 cpu cores and 2 GB memory.
There are two M1 local map tasks have to be assigned at the
moment. There are two potential solutions for task assign-
ment. Solution a is to assign only one local map task on
the node M1 while allowing another task to be assigned
on the node M2 without data locality. Solution b is to shrink
the resource demands of both map tasks to (1 cpu core,
1 GB memory) and then they both can be assigned on M1

node with local data access. Correspondingly, the contain-
ers for the two map tasks have to be proportionally shrank
when they are initialized. However, shrinking the resource
allocation for tasks definitely deteriorates performance.

We explore the performance impact of data locality and
resource configuration for individual map tasks. Fig. 6 com-
pares the map task completion time achieved with remote
data access and that achieved with local data access and
different resource configurations. In this case study, map
tasks are configured with 2 cores and 2 GB memory resource
demand (presented as <2core; 2G>). “R+100 percent”
meansmap tasks rely on remote data access and have 100 per-
cent resource, i.e., <2core; 2G> . “L+100 percent” means
map tasks rely on local data access and have 100 percent
resource, i.e., <2core; 2G> . It shows that map tasks that
have local data accesswith 100percent resource configuration
have the shortest completion time. It also demonstrates that
map tasks (i.e., L+80 percent) with less resource configuration
than its demand but with local data access have better perfor-
mance than map tasks (i.e., R+100 percent) that have full
amount of needed resource but have to do remote data access.

To coordinate the locality awareness, we develop a per-
task configuration approach [12] for iKayak that allocates
different amount of resource to map tasks instead of
maintaining the identical resource configuration of contain-
ers for all map tasks. As shown in Algorithm 3, iKayak peri-
odically checks the resource status of each node by
heartbeat connections. If there is any free resource available
in a node, ResourceManager assigns map tasks with data
locality to the node. Suppose there are Prequested M-local map
task assignments requested by ApplicationManager.
The node M has Rfree free resource and each task requests
Rdemand

map resource. At the beginning, iKayak accepts all map
tasks. If there is not enough resource to satisfy all of the
map tasks at the moment, iKayak gradually reduces the
number of accepted tasks and shrinks the resource configu-
ration of individual tasks. Eventually iKayak accepts
Paccepted M-local map tasks on the node M with the shrunk
resource configuration Rshrink

map . To avoid performance deteri-
oration, we set a shrinking ratio m to prevent iKayak from
shrinking the resource configuration of individual tasks too

much. The shrinking ratio m of map tasks is defined

as m ¼ Nlocal
NlocalþNremote

, where Nlocal and Nremote represent the

number of local and remote map task access respectively.

Algorithm 3.Map Task Shrinking Algorithm

1: repeat
2: if Any free resource is available on nodeMn then
3: Paccepted ¼ Prequested /*accepts all requested tasks*/
4: if Rn

free < p�Rdemand
map then

5: repeat
6: /*Shrink resource allocation of map tasks*/

7: Rshrink
map ¼ Rn

free

Paccepted
8: Reduce the number of accepted map tasks.
9: until Rshrink

map � m�Rdemand
map

10: end if
11: Accept Paccepted M-local map tasks.
12: Assign tasks with new configuration: Rshrink

map .
13: end if
14: until All running jobs completed

Fig. 6. Data locality and resource configuration.

CHENG ETAL.: CROSS-PLATFORM RESOURCE SCHEDULING FOR SPARK AND MAPREDUCE ON YARN 1347

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

4 IMPLEMENTATION

4.1 YARN Modification

We implemented iKayak by modifying classes Resource-

Manager, ApplicationManager and LaunchTaskAc-

tion based on Hadoop version 2.6.0. We added a new
interfaceexePlaceto implement the reservation-aware exec-
utor placement algorithm. When an application submits its
register request to ApplicationMaster of Spark, it will call the
method exePlace to allocate the resource for Executors. The
method exePlace is responsible for allocating the available
resource to applications, which is event-driven by any appli-
cation submissions or cluster resource changes. Additionally,
we added another new interface taskRes, which is used to
specify the resource configuration of individual tasks while
assigning them to slave nodes. Each executor placement and
task resource allocation is tagged with its corresponding
AttemptTaskID. During job execution,we created amethod
taskAnalyzer to collect the status of completed tasks
by using TaskCounter and TaskReport. The resource
utilizations and the execution times of tasks are reported by
TaskTrackers via heartbeat connection periodically.

4.2 Experiment Setup

We evaluate iKayak on a cluster composed of 3 T110 (8-core
CPUs and 16 GB RAM), 2 T420 (24-core CPUs and 32 GB
RAM), 1 T320 (12-core CPUs and 24 GB RAM), 2 T620
(24-core CPUs and 32 GB RAM), and 8 Dell desktops (8-core
CPUs and 16 GB RAM). Each machine has 1 TB hard disk.
The master node is hosted on one Dell desktop in the cluster.
The servers are connected with Gigabit Ethernet. The block
size of HDFS is set to 256 MB and the number of replicas of
HDFS is set to 3. iKayak is based on the version 2.6.0 of
Hadoop implementation and 1.4.0 of Spark implementation.
We implement iKayak on theMaster node of the cluster. The
suspension control interval (T) is set to 5 minutes, which is a
trade-off between the map task and the reduce task comple-
tion time. The suspension parameter v and the overhead (u)
are empirically determined to be 1 and 0.15 in the experiment.

4.3 Real-World Workloads

To understand the effectiveness of iKayak in a production
environment, we used a synthetic workload, “MicroSoft-

Derived (MSD)”, which models the production workload of
174,000 jobs in Microsoft datacenter in a single month
in 2011 [13] as MapReduce applications. MSD mimics
the distribution characteristics of the production jobs by
running Wordcount, Terasort and Grep applications from the
PUMA benchmark [6] with various input data sizes. It is a
scaled-down version of the workload studied in [13] since
our cluster is significantly smaller. We scale down the work-
load in two ways: we reduce the overall number of jobs to
87, and eliminate the largest 10 percent of jobs and the
smallest 20 percent of jobs. We used a set of representative
Spark applications from the “BigDataBench [7]” benchmark,
i.e., K-means, PageRank and Index, with the input data sets
from Wikipedia. We mixed MapReduce workload and
Spark workload at a ratio of 1:1 in the experiments, which is
based on the workload analysis from industry [2], [14].

As shown in Table 1, we set the Hadoop configurations
according to the rules recommended by Cloudera [15]. We
used the same configurations for evaluating various
approaches in the experiment. In YARN, there is no “slot”
which is the building block in the old versions, and the
system no longer distinguishes map and reduce tasks when
allocating resources. Instead, each task specifies a resource
request in the form of <1core; 2GB> (i.e., requesting 1 cpu
core and 2 GB memory), and it will be assigned to a node
with sufficient capacity. We configured the resource
demands of MapReduce workloads (as shown in Table 2)
and Spark workloads (as shown in Table 3) based the previ-
ous studies [1], [16] and our experimental experiences.

5 EXPERIMENTAL EVALUATION

5.1 Effectiveness of iKayak

We compare the performance of iKayak with two represen-
tative deployment models for running Spark on YARN
clusters [17]: YARN-cluster model and YARN-client model.

Reducing Spark Job Completion Time. Fig. 7a shows iKayak
significantly improves the job completion times of K-means,
PageRank and Index workloads about 50 and 30 percent
compared with YARN-client model and YARN-cluster
model, respectively. Spark jobs perform better than MapRe-
duce jobs due to two factors. First, as Spark is in-memory
computing application, Spark jobs are more sensitive of the
data locality than MapReduce jobs. The performance of
Spark degrades significantly if there is not enough memory
to store the data of a job. So our work focuses on shrinking
the resource configurations of map tasks for MapReduce
workloads while maintaining sufficient resource for Spark
applications. Second, it benefits from the capability of iKayak
that can adaptively search efficient worker nodes to place
executors based on the reservation time awareness. The
results also reveal that iKayak is more effective for CPU
intensive workload (i.e., K-means and Index) than I/O inten-
sive workload (i.e., PageRank). This is due to the fact that
the memory configurations of the machines in the cluster

TABLE 1
MapReduce Parameter Configuration

Parameter Wordcount Grep Terasort

io.sort.factor 10 10 10
io.sort.mb 100 mb 200 mb 150 mb
io.sort.record.percent 0.35 0.25 0.15
io.sort.spill.percent 0.8 0.6 0.75
io.file.buffer.size 4 k 16 k 32 k
mapred.child.java.opts 200 300 250

TABLE 2
Resource Configurations of MapReduce

Task Wordcount Grep Terasort

Map 1core, 1 GB 1core, 2 GB 1core, 2 GB
Reduce 1core, 1 GB 1core, 2 GB 1core, 2 GB

TABLE 3
Resource Configurations of Spark

K-means PageRank Index

4core, 4 GB 2core, 8 GB 4core, 6 GB

1348 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 8, AUGUST 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

are relatively limited. The reservation time of I/O intensive
workload is longer than that of CPU intensive workload.

Reducing MapReduce Job Completion Time. Fig. 7b shows
iKayak improves the overall job completion time of MSD
workload by 14 and 19 percent compared with YARN-client
mode and YARN-cluster model, respectively. This is due to
the fact that iKayak is more flexible about the resource man-
agement and task scheduling of MapReduce applications in
a task dependence and locality aware manner. On the other
hand, Fig. 7b shows that YARN-client model achieves better
performance than YARN-cluster model does. This is
because that YARN-client model hosts only one Spark
application at one time. It allocates more cluster resources
to MapReduce applications than YARN-cluster model does.

Increasing Cluster Resource Utilization. Fig. 7c shows the
CPU utilizations of the various type machines that resulted
from different cluster resource scheduling approaches.
It demonstrates iKayak improves the overall CPU utilization
of all type machines in the cluster by 22 and 15 percent
compared with YARN-client model and YARN-cluster
model, respectively. Note that iKayak achieves a lower utili-
zation improvement on T420 and T620 machines compared
to others in the cluster. This is due to its relatively lower
memory resource availability and powerful CPU. Thus, it is
hard to fully utilize the CPU especially for memory intensive
computing. We further compare the CPU utilization under
the dynamic resource allocation (Dynamic R.A.) policy
of Spark and the proposed iKayak approach. The coarse-
grained dynamic resource allocation policy improves the
CPU utilization by 16 and 9 percent compared with YARN-
client model and YARN-cluster model, respectively. The
results demonstrate that the fine-grained resource allocation
of iKayak provides higher resource utilization than the
dynamic allocation policy does.

5.2 Benefit of Executor Placement

Fig. 8 compares the job completion times and CPU utiliza-
tions achieved by different executor placement strategies
(i.e., SpreadOut, Nonspreadout and iKayak) while running
the three Spark workloads on the cluster. The result demon-
strates the proposed reservation-aware executor placement
approach significantly reduces the job completion times
and reservation times of the Spark jobs while increasing the
CPU utilization of the hosting machines.

Reducing Job Completion Times. Fig. 8a shows iKayak
significantly reduces the job completion times of K-means,
PageRank and Index workloads up to 55 and 37 percent
compared with NonspreadOut policy and SpreadOut policy,
respectively. It can automatically select the destination
machines to host Spark executors, which aims to avoid the
unnecessary waiting time for resource reservation. In partic-
ular, the reservation-aware executor placement mechanism
effectively reduces the opportunity of placing executors on
the worker nodes that host long running reduce tasks. The
result also shows that NonspreadOut approach achieves
better performance than SpreadOut policy in terms of job
completion time. This is due to the fact that NonspreadOut
encourages executors to be placed on a subset of machines
in the cluster so that it can reduce the intermediate data
traffic to improve performance.

Reducing Reservation Times. Fig. 8b shows the reservation-
aware executor placement mechanism of iKayak signifi-
cantly reduces the reservation times of K-means, PageRank
and Index workloads up to 67 and 53 percent compared
with NonspreadOut policy and SpreadOut policy, respec-
tively. It also illustrates that the reservation time of the
executors with fewer resource demands (i.e., K-means) is
apparently less than that of the executors with more
resource demands (i.e., PageRank and Index). This is due to

Fig. 7. Effectiveness of iKayak for spark, MapReduce and the cluster resource utilization.

Fig. 8. Effectiveness of the reservation-aware executor placement for Spark applications.

CHENG ETAL.: CROSS-PLATFORM RESOURCE SCHEDULING FOR SPARK AND MAPREDUCE ON YARN 1349

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

the fact that small resource demand can be satisfied in time
by the current reservation based resource management
scheme in YARN. The result also reveals that SpreadOut
approach achieves better performance than NonspreadOut
policy in terms of reservation time. The reason is that the
centralized deployment of NonspreadOut causes more
executors to be co-hosted with reduce tasks than SpreadOut
does, leading long time to wait for resource reservation.

Increasing CPU Utilization. Fig. 8c shows the executor
placement mechanism slightly increases the CPU utiliza-
tions (i.e., 10 percent) for the three different workloads since
most of Spark workloads are memory intensive application
and have limited impact on CPU resource. On the other
hand, SpreadOut incus higher CPU utilization than Non-
spreadOut does. This is due to the fact that SpreadOut policy
tries to spread out all executors on the whole cluster. It leads
executors to be located on most nodes in the cluster, which
results in higher CPU utilization than NonspreadOut.

5.3 Accuracy of Remaining Time Estimation

iKayak applies fuzzy models to estimate the reduce task
remaining times while selecting efficient hosting machines
for Spark executors. To evaluate the accuracy of the fuzzy
models, we compare the error between the predicted reduce
task remaining times and the actual remaining times. The
accuracy is measured by the normalized root mean square
error (NRMSE), a standard metric for deviation. Three Map-
Reduce applications from the PUMA benchmark [6], i.e.,
Terasort, Grep and WordCount, each with 300 GB input data,
were run on the four different machines (i.e., T420, T320,
T620 and T110) in the cluster. Accordingly, we recorded
the actual remaining times and predicted remaining times
of 12 reduce tasks as shown in Fig. 9a. It shows that the pre-
diction was quite accurate, with on average 7.8 percent
NRMSE. Fig. 9b shows that as the remaining time prediction
error is increased from 10 to 35 percent, the Spark job execu-
tion times increased from 7.5 to 34 percent compared to the
execution times achieved with iKayak’s real prediction
accuracy. This is due to the fact that inaccurate remaining
time estimation may incur additional Spark executor wait-
ing time for resource reservation. This observation confirms
that the reservation-aware executor placement, and the esti-
mation accuracy of reduce task remaining time are critical
to reducing Spark job execution times, and the executor
placement waiting times.

5.4 Benefit of Resource Adjustment

Fig. 10 depicts the throughput of MapReduce tasks
achieved by iKayak and stock YARN in the experiment. We
turn off other features of iKayak except the resource

adjustment mechanism. The result demonstrates that the
resource adjustment mechanism of iKayak effectively
increases the throughput of map tasks and slightly reduces
the completion times of reduce tasks. Fig. 10a shows that
the throughput of map tasks on the Desktop machine is
significantly increased about 17 percent compared to stock
YARN since the dependence-aware resource adjustment
mechanism gives more resource to map executions. The
resource adjustment mechanism periodically suspends the
reduce tasks when there are not enough intermediate data
to process and releases the redundant resource to the
related map tasks.

The reduce suspending provides more cluster resource
for the corresponding map tasks. It further produces more
intermediate data for their reduce tasks. Thus, suspending
reduce tasks indeed accelerates these reduce task executions
in this case. Fig. 10b demonstrates that the suspending
policy has reduced the reduce completion time 8 percent
than stock YARN does on the Desktop machine. This is due
to the fact that the resource allocated to reduce tasks are
over provisioning and would be idle if there are not enough
intermediate data to feed.

5.5 Benefit of Locality Coordination

Fig. 11 demonstrates that the proposed locality-aware task
assignment coordination module effectively improves the
local data access rate of MapReduce tasks and accordingly
reduces job completion times. Fig. 11a compares the
local data access rates of map tasks achieved by the locality-
aware coordination of iKayak and YARN-cluster model in
the experiment. The result demonstrates that iKayak
increases the local data access by 27 percent compared
to YARN-cluster model for the workload Wordcount, Grep
and Terasort. This is due to the fact that the coordination
mechanism enforces map tasks to be assigned on the
hosting nodes with local data access when MapReduce
competes the locality awareness with Spark applications.
Thus, the coordination mechanism allows more local map
executions than the YARN-cluster deployment.

As described before, shrinking the resource allocations
for map tasks to achieve local data access deteriorates indi-
vidual map task performance. Fig. 11b shows the average
map task completion time increases slightly by 9 percent
when apply the locality-aware coordinator. However, the
performance deterioration of individual tasks contributes
more opportunities to run map tasks in parallel (i.e.,
increasing map “slots”). When shrinking some tasks to pre-
fer data locality, there are more resources on other slave
machines in the cluster will be freed. Those available resour-
ces can be used to run more other tasks in parallel than

Fig. 9. Accuracy of task remaining time estimation. Fig. 10. Effectiveness of reduce adjustment.

1350 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 8, AUGUST 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

without task shrinking. Increasing parallelism of map
execution does not only compensate the performance losses
of the shrunk map tasks, but also significantly improve job
level performance. The whole job execution progress will be
speeded up correspondingly. Fig. 11c demonstrates the job
completion times of Wordcount, Grep and Terasort are
effectively reduced when apply the locality-aware task
assignment coordination mechanism.

5.6 Impact of Parameters and Configurations

We change the values of the suspension weight parameter v
and the overhead u to study their impact on the performance
improvement in terms of job completion time. Fig. 12a
shows that the job completion time initially decreases as the
suspension parameter v increases. However, increasing the
v further leads to performance degradation. This tells
that a very large suspension parameter v may lead to job
completion time deterioration. A large overhead u (e.g., 2)
leads significant performance deterioration due to the insta-
bility of suspension control. Thus, we empirically set the
suspension parameter v to 1 in the experiment. Fig. 12b
shows that tuning the suspension overhead u has the similar
phenomenon with tuning the parameter v. We empirically
set the overhead u to 0.15 without affecting system stability.
It is a tradeoff between the reduce task suspension time cost
and the job completion time.

We further explore the effectiveness of the proposed
iKayak under the various configurations (i.e., applying early
start and delay scheduling) in the experiment. We first com-
pared the performance improvements under the different
early start percentages. Fig. 13a shows the job completion
times changed as we altered the values of the early start per-
centage under the different approaches, i.e., iKayak and
original YARN. The result demonstrates that iKayak outper-
forms the original YARN about 7 percent in terms of job
completion time when tuning the early stage percentage. It

shows that IO intensive workload (e.g., terasort) prefers
small early start percentages since the intermediate data
from map tasks can be directly shuffled to save the band-
width. Non-IO intensive workload (e.g., wordcount) prefers
a large early start percentage because it prevents reduce
tasks to occupy the reduce slots without execution. We then
compared the local data access rates while applying differ-
ent scheduling policies (i.e., Delay (D) and Non-delay (N))
on MapReduce and Spark, respectively. The results in
Fig. 13b shows that the delay scheduling increases the local
access rate 12–15 percent if only one application (i.e., Spark
or MapReduce) adopts it. However, when both Spark and
MapReduce apply the delay scheduling, the local access
rates are similar with the scenario that both of them do not
apply the delay scheduling.

5.7 iKayak Overhead and Scalability

The overhead of iKayak mainly comes from the time
required to perform the executor placement algorithm,
the time required to suspend and resume reduce tasks, and
the time required to reconfigure individualmap tasks. Exper-
imental results show that the overhead of the executor place-
ment algorithm is between 120 to 150ms, which is very small
compared to Spark job execution time. We also measure the
suspension overhead in each control interval. iKayak took
on average of 2.7 seconds to suspend and resume a reduce
task. The overhead is relatively negligible compared to the
5-minute control interval. Finally, the overhead of the task-
level reconfiguration is quite stable (i.e., 45-55 ms) and inde-
pendent of the testbed size. iKayak is scalable and applicable
to larger scale clusters. The revisions on YARN components
do not affect other computing systems.

6 RELATED WORK

Big-Data Resource Management. Modern big-data clusters
apply a diverse mix of resource managers, e.g., YARN,

Fig. 12. Sensitivity of suspension parameter tuning. Fig. 13. Impact of early start and delay scheduling.

Fig. 11. Impact of cross-platform locality-aware assignment coordination (LAC).

CHENG ETAL.: CROSS-PLATFORM RESOURCE SCHEDULING FOR SPARK AND MAPREDUCE ON YARN 1351

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

Corona, Omega and Mesos. These different computing
frameworks have inherently different scheduling needs.
YARN [3], the second generation of Hadoop, added a
resource management layer in Hadoop. It allows different
applications to be allocated with different number of task
containers. Corona [18] is developed by Facebook and pro-
vides more flexibilities to manage the cluster resources
based on the different resource demands of workloads.
Omega [19], a new parallel scheduler architecture built
around shared state, using lock-free optimistic concurrency
control, to achieve both implementation extensibility and
performance scalability. Mesos [5] abstracts CPU, memory,
storage, and other compute resources away from machines,
enabling fault-tolerant and elastic distributed systems to
easily be built and run. Among these Big-data resource
managers, YARN is the only one that supports security and
leverages the existing HDFS dataset at the same time.

MapReduce Optimization. There are growing interests on
MapReduce performance optimization with various techni-
ques, e.g., resource provisioning [20], [24], job scheduling [22]
and self-tuning configuration [12]. Jinda et al. [21] proposed
a new data layout, coined Trojan Layout, that internally
organizes data blocks into attribute groups in order to
improve data access times. Dittrich et al. proposedHadoop++
[26], a new index and join technique to improve runtime
ofMapReduce jobs. They are able to schedule incomingMap-
Reduce jobs to data block replicas with the most suitable Tro-
jan Layout. Recently, a few studies start to explore that how
to optimize Hadoop configuration to improve MapReduce
performance. Herodotou et al. proposed Starfish [23], an opti-
mization framework that hierarchically optimizes fromMap-
Reduce jobs to work flows by searching for good parameter
configurations. None of these approaches consider to opti-
mize MapReduce performance by dynamic job scheduling in
the Spark-on-YARN environment.

Task Scheduling. Many prior studies have shown that
MapReduce performance can be significantly improved by
various scheduling techniques [22], [25]. The default FIFO
Scheduler in Hadoop implementation may not work well
since a long job can exclusively take the computing resource
on the cluster, and cause large delays for other jobs. This is
the reason that many schedulers, e.g., Capacity Scheduler,
Fair Scheduler, can share resources among multiple jobs.
Recently, a few studies [20] start to optimize the perfor-
mance of MapReduce jobs with respect to their performance
goals. Wolf et al. described FLEX [22], a flexible and intelli-
gent allocation scheme for MapReduce workloads. It is
proposed as an add-on module that worked synergistically
with Fair Scheduler to provide performance guarantees.
Curino et al. designed a reservation-based scheduling [20],
that provides support for prioritized MapReduce schedul-
ing of the jobs with various deadlines. Our work differs
from these efforts in that we consider running Spark and
MapReduce applications together on YARN clusters.

7 CONCLUSIONS AND FUTURE WORK

We observed that running Spark and MapReduce on YARN
clusters incurs significant performance deterioration due
to the semantic gap between the reservation-based resource
allocation scheme of YARN and the dynamic application
demands. Therefore,we design anddevelop a cross-platform

resource scheduling middleware, iKayak, that aims to
improve the cluster resource utilization aswell as application
performance for Spark-on-YARN deployment. It relies
on three key mechanisms, i.e., reservation-aware executor
placement, dependency-aware resource adjustment and
locality-aware assignment coordination. iKayak leverages
time-varying resource demands of different applications,
inter-task dependency between map and reduce tasks, and
cross-platform locality awareness to tackle the aforemen-
tioned challenges. Experimental results show that iKayak
achieves up to 50 percent performance improvement
for Spark applications and 19 percent performance improve-
ment for MapReduce applications compared to the two
popular Spark on YARN deploy models, i.e., YARN-client
model and YARN-cluster model. In future work, we
will explore more cross-platform resource scheduling
approaches while deploying other processing paradigms
(e.g., Shark, Pig, Storm andHive) onHadoop YARN.

ACKNOWLEDGMENTS

This research was supported in part by US National Science
Foundation research grant CNS-1422119. Xiaobo Zhou is
the corresponding author.

REFERENCES

[1] M. Zaharia, et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. USENIX
Symp. Netw. Syst. Des. Implementation, 2012, pp. 2–2.

[2] Yahoo!, “Let spark fly: Advantages and use cases for spark on
hadoop,” 2014. [Online]. Available: https://spark-summit.org/
2014/

[3] V. K. Vavilapalli, et al., “Apache Hadoop YARN: Yet another
resource negotiator,” in Proc. ACM 4th Annu. Symp. Cloud Comput.,
2013, Art. no. 5.

[4] Pivotal Cloud Foundry, “YARN resource management,” [Online].
Available: http://pivotalhd.docs.pivotal.io/docs/yarn-resource-
management.html

[5] B. Hindman, et al., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. USENIX Symp. Netw.
Syst. Des. Implementation, 2011, pp. 295–308.

[6] PUMA, “Purdue MapReduce benchmark suite,” 2012. [Online].
Available: https://engineering.purdue.edu/ puma/datasets.htm

[7] L. Wang, et al., “BigDataBench: A big data benchmark suite from
internet services,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit., 2014, pp. 488–499.

[8] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. ACM
Eur. Conf. Comput. Syst., 2010, pp. 265–278.

[9] Spark 1.4.0 Documentation, “spark.deploy.spreadOut,” 2015.
[Online]. Available: https://spark.apache.org/docs/1.4.0/spark-
standalone.html

[10] Y. Chen, B. Yang, A. Abraham, and L. Peng, “Automatic design of
hierarchical Takagi Sugeno type fuzzy systems using evolutionary
algorithms,” IEEE Trans. Fuzzy Syst., vol. 15, no. 3, pp. 385–397,
Jun. 2007.

[11] Y. Wang, C. Xu, X. Que, X. Li, and W. Yu, “JVM-bypass shuffling
for Hadoop acceleration,” in Proc. IEEE 7th Int. Symp. Parallel
Distrib. Process., 2013, pp. 569–578.

[12] D. Cheng, J. Rao, Y. Guo, and X. Zhou, “Improving MapReduce
performance in heterogeneous environments with adaptive task
tuning,” in Proc. ACM/IFIP/USENIX 15th Int. Middleware Conf.,
2014, pp. 97–108.

[13] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and
A. Rowstron, “Scale-up versus scale-out for hadoop: Time to
rethink?” in Proc. ACM Symp. Cloud Comput., 2013, Art. no. 20.

[14] eBay, “Using spark to ignite data analytics,” 2014. [Online]. Available:
http://www.ebaytechblog.com/2014/05/28/using-spark-to-ignite-
data-analytics/U-qUSPldUbw

1352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 8, AUGUST 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

[15] Cloudera, “Configuration parameters,” 2012. [Online]. Available:
http://blog.cloudera.com/blog/author/aaron/

[16] M. Li, et al., “MRONLINE: Mapreduce online performance
tuning,” in Proc. ACM Symp. High-Perform. Parallel Distrib.
Comput., 2014, pp. 165–176.

[17] Cloudera, “Apache Spark resource management and YARN app
models,” 2014. [Online]. Available: http://blog.cloudera.com/
blog/2014/05/apache-spark-resource-management-and-yarn-
app-models/

[18] Facebook, “Hadoop corona: The next version of MapReduce,” 2013.
[Online]. Available: https://github.com/facebookarchive/hadoop-
20/tree/master/src/contrib/corona

[19] M. Schwarzkopf, A. Konwinski, M. Abd-el-Malek , and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
in Proc. 8th ACM Eur. Conf. Comput. Syst., 2013, pp. 351–364.

[20] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramak-
rishnan, and S. Rao, “Reservation-based scheduling: If you’re
late don’t blame us!” in Proc. ACM Symp. Cloud Comput., 2014,
pp. 1–14.

[21] A. Jindal, J.-A. Quian�e-Ruiz, and J. Dittrich, “Trojan data layouts:
Right shoes for a running elephant,” in Proc. 2nd ACM
Symp. Cloud Comput., 2011, Art. no. 21.

[22] J. Wolf, et al., “FLEX: A slot allocation scheduling optimizer
for MapReduce workloads,” in Proc. ACM/IFIP/USENIX 11th
Int. Middleware Conf., 2010, pp. 1–20.

[23] H. Herodotou, et al., “Starfish: A self-tuning system for big data
analytics,” inProc. Conf. Innovative Data Syst. Res., 2011, pp. 261–272.

[24] D. Cheng, C. Jiang, and X. Zhou, “Resource and deadline-aware
job scheduling in dynamic Hadoop clusters,” in Proc. IEEE
Int. Symp. Parallel Distrib. Process., 2015, pp. 956–965.

[25] D. Cheng, P. Lama, C. Jiang, and X. Zhou, “Towards energy
efficiency in heterogeneous Hadoop clusters by adaptive task
assignment,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2015,
pp. 359–368.

[26] J. Dittrich, J.-A. Quian�e-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a yellow elephant run like a chee-
tah (without it even noticing),” Proc. VLDB Endowment, vol. 3,
pp. 518–529, 2010.

Dazhao Cheng received the BS and MS degrees
in electronic engineering from Hefei University
of Technology, in 2006 and the University of
Science and Technology of China, in 2009,
respectively, and the PhD degree from the
University of Colorado, Colorado Springs, in
2016. He is currently an assistant professor in the
Department of Computer Science, University of
North Carolina, Charlotte. His research interests
include cloud and data intensive computing.

Xiaobo Zhou received the BS, MS, and PhD
degrees in computer science from Nanjing
University, in 1994, 1997, and 2000, respectively.
Currently, he is a professor and the chair of the
Department of Computer Science, University
of Colorado, Colorado Springs. His research
lies broadly in computer network systems, specif-
ically, cloud computing and datacenters, BigData
parallel and distributed processing, autonomic
and sustainable computing, and scalable Internet
services and architectures. He received the NSF
CAREER Award in 2009. He is a senior member
of the IEEE.

Palden Lama received the BTech degree in
electronics and communication engineering from
the Indian Institute of Technology, in 2003 and the
PhD degree in computer science from the Univer-
sity of Colorado, Colorado Springs, in 2013. Cur-
rently, he is an assistant professor in the
Department of Computer Science, University of
Texas, San Antonio. His research interests
include cloud computing and big data processing
in the cloud.

Jun Wu received the BS degree in information
engineering and the MS degree in communica-
tion and electronic system from Xidian University,
in 1993 and 1996, respectively, and the PhD
degree from Beijing University of Posts and
Telecommunications, in 1999. He is a professor
in the Computer Science and Technology Dep-
artment, Tongji University, China. His research
interests include wireless communication and
signal processing.

Changjun Jiang received the PhD degree from
the Institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 1995. Currently, he is
a professor in the Department of Computer
Science, Tongji University, Shanghai. He is also
the director of Professional Committee of
Petri Net of China Computer Federation. His
current areas of research are concurrency and
parallelism, BigData, Petri net, and intelligent
transportation systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHENG ETAL.: CROSS-PLATFORM RESOURCE SCHEDULING FOR SPARK AND MAPREDUCE ON YARN 1353

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:43:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

