
Data-driven Task Allocation for
Multi-task Transfer Learning on the Edge

Qiong Chen1 Zimu Zheng2,3 Chuang Hu2 Dan Wang2 Fangming Liu∗1
1National Engineering Research Center for Big Data Technology and System,

Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology, China
2Department of Computing, The Hong Kong Polytechnic University, Hong Kong

3Technical Innovation Department, Cloud BU, Huawei Technologies Co.Ltd

Abstract—Edge computing for machine learning has become a
heated research topic. On edge devices, data scarcity occurs as a
common problem where transfer learning serves as a widely-
suggested remedy. Nevertheless, one obstacle is that transfer
learning imposes heavy computation burden to the resource-
constrained edge devices. Motivated by the fact that only a few
tasks of Multi-task Transfer Learning (MTL) have a higher po-
tential for overall decision performance improvement, we design a
novel task allocation scheme, which assigns more important tasks
to more powerful edge devices to maximize the overall decision
performance. In this paper, we focus on task allocation under
multi-task scenarios by introducing task importance and make
the following contributions. First, we reveal that it is important
to measure the impact of tasks on overall decision performance
improvement and quantify task importance. We also observe
the long-tail property of task importance, i.e., only a few tasks
are important, which facilitates more efficient task allocation.
Second, we show that task allocation with task importance for
MTL (TATIM) is in fact a variant of the NP-complete Knapsack
problem, where the complicated computation to solve this prob-
lem needs to be conducted repeatedly under varying contexts. To
solve TATIM with high computational efficiency, we innovatively
propose a Data-driven Cooperative Task Allocation (DCTA)
approach. Third, we evaluate the performance of our DCTA
approach by applying it to a real-world industrial operation (e.g.,
AIOps) scenario. Experiments show that our DCTA approach can
reduce 3.24 times of processing time compared with the state-of-
the-art when solving TATIM. We offer our DCTA approach as
an effective and practical mechanism for reducing the required
resource associated with performing MTL on edge devices.

I. INTRODUCTION

Nowadays, computationally intensive machine-learning ap-

plications such as image recognition are becoming popular on

resource-constrained edge devices (e.g., intelligent camera).

While enjoying the merits of these applications, users are also

frustrated when striking the balance between execution time

*The corresponding author is Fangming Liu (fmliu@hust.edu.cn). This
work was supported in part by the NSFC under Grant 61761136014
(and 392046569 of NSFC-DFG) and 61722206 and 61520106005, in
part by National Key Research & Development (R&D) Plan under grant
2017YFB1001703, in part by the Fundamental Research Funds for the Central
Universities under Grant 2017KFKJXX009 and 3004210116, in part by the
National Program for Support of Top-notch Young Professionals in National
Program for Special Support of Eminent Professionals, in part by Hong Kong
ITF UIM/363, and in part by Technical Innovation Department, Cloud BU,
Huawei Technologies Co.Ltd.

and resource requirement on the edge. To address this problem,

many task partitioning approaches have been proposed. Gener-

ally, an edge application is partitioned into a set of tasks which

can be executed on the edge devices. For example, the video

analytics application usually consists of several tasks, e.g., face

detection and action classification, and allocates these tasks to

multiple edge nodes to execute. Application separation and

task allocation reduce the burden of a single edge device and

jointly improve the performance of the application.

However, in major edge computing systems, we often

face challenges in learning under data scarcity, due to either

prohibitive cost, e.g., privacy concern, storage limitations, and

networking costs, or inherent difficulty in obtaining required

proper training samples with respect to the system complexity

and uncertainty on the edge. Recently, transfer learning shows

its effectiveness to tackle the data scarcity issue [1] and

serves as a widely-suggested remedy for different industrial

applications with insufficient samples, e.g., image recogni-

tion [2], speech analysis [3], disease diagnosis [4], medical

informatics [5] and industrial operations (e.g., AIOps) [6].

In this paper, we focus on the Multi-task Transfer Learning
(MTL) on the edge, where a machine-learning-based applica-

tion can be divided into multiple machine-learning tasks, and

each task can obtain the knowledge of some other tasks to

improve its performance. It is well known that the machine-

learning-based application is highly computation-intensive, but

the computing resource of edge device is limited. Many efforts

have been devoted to designing task allocation mechanisms to

achieve varying objectives, e.g., optimize the makespan [7],

throughput [8] or reliability [9] of the application. However,

these frameworks focus on general parallel tasks in the central-

ized datacenter where the computation capacity is assumed to

be infinite in terms of constantly leasing of virtual machines.

In edge computing systems, it is sometimes hard to obtain

a satisfactory result within time and resource limitations if we

directly utilize existing frameworks for the cloud. Admittedly,

existing task allocation studies have considered that different

tasks may require different resources in edge computing

systems in order to jointly improve the performance of the

application [10]–[13]. They are usually designed for general

machine learning and typically assume that all tasks contribute

1040

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00107

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

identically to overall performance improvement of the applica-

tion. However, in MTL, tasks belonging to the same machine-

learning-based application usually have different potential for

improving the application’s overall performance. Directly ap-

plying these techniques leads to inefficient resource utilization

at a task level under MTL in edge computing systems.

To solve the above inefficient issue for multiple-task al-

location in edge computing systems, the key is that more

important tasks, which have the higher potential for improving

the application’s overall decision performance, should be al-

located to more powerful edge devices for priority execution

under time limits. Recently, Geng et al. also considered the

priority of tasks by leveraging the dependency of tasks in

task allocation [14]. In that study, the task dependency is

predefined and remains fixed over time, e.g., installing Hadoop

before Spark. However, due to the complex nature of machine-

learning tasks, variables such as environmental conditions and

model configurations are likely to change over time. The

dependency of machine-learning tasks is dynamic and usually

not available before learning. Directly applying the current

allocation mechanism can easily result in significant overall

application performance degradation for MTL.

Instead of assuming that all tasks contribute identically to

the application’s overall decision performance improvement

and conducting the time-dynamic task allocation on the edge,

our idea is to leverage machine learning techniques to cap-

ture the correlated and collective potential improvement of

multiple tasks. Accordingly, we propose a novel Data-driven

Cooperative Task Allocation (DCTA) mechanism to maximize

the application’s overall decision performance among multiple

tasks on the edge.

Challenges and solutions. In designing DCTA, we have to

overcome three following major technical challenges.

First, the metric of tasks impact on overall decision perfor-

mance improvement remains unknown in current studies. To

tackle the challenge, we propose a metric of task importance,

which is to measure the overall performance degradation

when the measured task is not conducted in MTL. We also

observe the long-tail property of task importance, i.e., only

a few tasks are important, which serves as a key metric to

guide task allocation and facilitate resource saving from less

important tasks. We formally define the TATIM problem of

task allocation with task importance for MTL on the edge.

Second, the TATIM problem is challenging not only due

to its computation complexity (i.e., NP-complete) but also the

varying contexts (i.e., dynamic task importance) on the edge.

We first prove that TATIM is a variant of Knapsack problem

and thus NP-complete. We then show that the task importance

is difficult to capture, due to varying environmental conditions

and configurations. Therefore, the complicated computation to

solve this problem needs to be conducted repeatedly under

varying contexts on the edge. To enhance the computational

efficiency, we propose a novel data-driven task allocation

mechanism based on reinforcement learning.

Third, applying the machine learning technique to solve the

TATIM problem introduces a trade-off between accuracy and

cost. On one hand, an accurate data-driven model requires a

huge amount of expensive local data on real-world operations.

On the other hand, merely using general data from simulation

helps to reduce the amount of local data needed but leads

to low accuracy. To tackle the challenge, we propose a

cooperative learning mechanism to reduce the amount of data

needed to generate a reliable data-driven model, by leveraging

both general simulated data and local real-world data.

We implement DCTA as a novel task allocation approach

within a data-driven building management system. We also

evaluate various distinct task allocation approaches on the real-

world industrial operation (e.g., AIOps) scenario. Experiments

show that DCTA saves 3.24 times of processing time when

solving TATIM compared to the state-of-the-art.

II. BACKGROUND AND PROBLEM DEFINITION OF TASK

ALLOCATION WITH TASK IMPORTANCE

In this section, we first introduce the background of Multi-

task Transfer Learning (MTL). We then give a formal def-

inition of task importance. We also observe the long-tail

property of task importance and the potential of leveraging task

importance for task allocation in MTL. With these notations,

we formally define the problem of task allocation with task

importance for MTL.

A. Background of Multi-task Transfer Learning (MTL)

In this paper, we study the issue of Multi-task Transfer
Learning (MTL) on the edge, where varying tasks together

can facilitate better decision performance. It basically reuses

parameters or training samples of source tasks to support target

tasks, e.g., which are lack of training data. The term task is

defined as a set of data, label and its corresponding learning

model for a predefined context. For example, for a self-driving

car on the road, the detection of each type of object, e.g.,

neighboring-car, traffic-sign, or pedestrian detection, can be

modeled separately as a task. Another example is to take the

coefficient of performance (COP) prediction of a chiller for

one particular load as a task. The process is shown in Fig. 1.

The benefits of multiple tasks come in mainly two ways.

First, similar tasks can transfer their knowledge between each

other during the training process, which reduces the negative

effect of data scarcity, especially on the edge. Second, in the

real-world scenario, it is common to make the final decision by

aggregating the output of multiple tasks. Maintaining the high

performance of all these tasks contribute to the final aggregated

decision performance. Again in the example of a self-driving

car, the final driving operation of the car is conducted based on

the result of multiple data-driven tasks, e.g., the neighboring-

car, traffic-sign, and pedestrian detection.

The Computation Challenge. However, the current MTL

systems are way too computationally complicated for edge de-

vices. The reason is twofold: 1) Each task needs to be learned

individually from scratch, where siloing tasks make training a

new task or a comprehensive perception system a Sisyphean

challenge; 2) To avoid data-driven task model being out-of-

date and leverage the latest accumulated data as effectively as

1041

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

(a) Traditional Learning
and Decision Making (b) Multi-task Transfer Learning and Decision Making

Traditional Learning Task

Data

Learning
Process

Task 1 Task 2

Source Tasks
Task N

Target Task

Transfer Learning Task N
Task 1

Decision Making

...
...

Decision Making

Task 2 Task N

Predicted Value

Predicted
 Value

Predicted
 Value

Predicted
 Value

Fig. 1: Decision making with (a) traditional learning and (b) transfer learning.

possible, MTL practitioners retrain their models repeatedly to

get the final model with the best quality, including to explore

feature representation [15]–[17], adjust structures of task rela-

tionship [18]–[20] and tune hyper-parameters [21]. For better

understanding, a formal formulation of transfer-learning tasks

on the edge is available in the following Section II-C.

B. Introduction of Task Importance

Confronted with the computational challenge of MTL, we

aim to allocate tasks for more efficient MTL on the edge.

When allocating tasks, current studies usually assume that all

machine-learning tasks are equally important so that resources

should be allocated to ensure the accuracy of all these tasks.

However, tasks are not always related to the current context,

and thus not equally important. At a specific period of time,

e.g., within one hour, the number of highly important tasks

are likely to be of a minor, compared with the number of all

possible tasks. For example, for a self-driving car on the high

way, neighboring car detection can be much more related and

important compared with most tasks like pedestrian detection

which are more important in a downtown area.

For further study of the importance of tasks, we plot the

distribution of task importance in Fig. 2, based on a real-world

transfer learning dataset released in [22]. The importance of a

task is defined as the overall performance degradation of the

final decision making when this task is not conducted. In there

are totally 50 data-driven tasks for cooling operations running

across four years in three buildings. We observe a long-tail

property of task importance, i.e., merely 12.72% of tasks have

a high contribution of over 80% to the final operation decision

performance. We therefore have such an observation. Results

in a recent CVPR paper also confirm such an observation [23].

Observation 1. In MTL, redundant or noisy tasks exist; The
importance of tasks has a long-tail distribution.

The redundant or noisy tasks can be the result of 1)

insufficient training samples on the edge, and 2) mismatch

of context and submitted tasks in practical scenarios. We then

formally define task importance.

Definition 1. (Task Importance) Given a task set J = {j}
which consists of a series of tasks, the importance of task j is

Ij = H(J;θ)−H(J\{j};θ\{θj}), (1)

where a learning task is denoted by j ∈ N
+; θj denotes the

model parameters of task j and θ = {θj} denotes its vector;

Fig. 2: The long-tail distribution
of normalized task importance.

Fig. 3: The potential with ACCU-
RATE and CURRENT schemes.

decision function H(·) outputs the final decision performance;
J denotes the entire task set.

Thus, given model parameters θ, the task importance Ij can

be updated using the decision function H(·). Given that the

ideal performance of final decision can usually be collected

after task evaluation, an example of implementation of H(·)
might be H(J;θ) = 1 − |D−D(θ)|

D , where D denotes the

ideal performance and D(·) is the decision-making function

given model parameters. The decision-making function D(·)
is intrinsically solving an optimization problem finding the

best action according to parameters, which can be set once

given the scenario. For example, in the case of a self-driving

car, a possible decision-making function is to find an action

which minimizes the probability of accident while ensures

the car should be able to arrive at the destination under time

limitations.

More important tasks should be allocated to more powerful

edge devices under MTL scenarios with execution time limits.

To demonstrate the benefit, we show the performance of

decision making by conducting related tasks, compared with

the performance of conducting random tasks. Figure 3 shows

the result based on the transfer-learning dataset mentioned

above [22]. Accurate task allocation is conducted with high

task importance. Stacked bars on the left indicate the final

performance of decision making with accurate task allocation,

i.e., energy saving for cooling. Bars on the right show the

performance of the current scheme using random task allo-

cation. We see that the accurate task allocation considering

task importance could have resulted in an average of over

45.68% potential improvement in terms of the final decision

making performance. These results demonstrate that there

is a significant room to improve the final decision making

performance when using a more accurate and robust scheme

of task allocation.

Observation 2. Final decision making with MTL can be
improved by task allocation according to task importance.

However, the task importance is not directly available.

Based on the above dataset, we also conduct two experiments

as a more detailed distribution study showing how the im-

portance fluctuates over operations under different industrial

demands and conditions.

We first plot the average task importance as a function of

different operations in Fig. 4. We pick the first regular machine

for example. It can be seen that these machines often operate

at a small portion of operations, and the importance fluctuates

somewhat randomly. At the same time, for the same machines,

1042

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Average task importance
for different machines and oper-
ations.

Fig. 5: Task importance variation
for different machines and opera-
tions.

we plot in Fig. 5, the variation in their task importance under

different operations, and note that there is a large fluctuation

even for a given operation.

Observation 3. Task importance fluctuates markedly over
operations with MTL in terms of average and variance.

The time-dynamic task importance changes in varying con-

texts, e.g., with different external factors (like environmental

conditions and dynamic industrial demands) and internal fac-

tors (like machine configurations and response). These factors

are exceedingly difficult to capture within an analytical model.

Facing such a high variance of task importance situation,

natural thinking of modeling task importance using synthetic

models easily suffers from low accuracy.

C. Problem of Task Allocation with Task Importance for MTL

Based on the above notations and observations, we are able

to leverage task importance to facilitate task allocation for

MTL tasks on the edge. We start by formally define task
allocation and MTL tasks on the edge.

Definition 2. (Task Allocation) Given a processor set P = {p}
which consists of a series of processors, the task allocation
over P is a binary variable uj,p, i.e.,

uj,p =

{
1, if task j is assigned to processor p

0, otherwise,

where a processor is denoted by p ∈ N
+.

Since each task is assigned to exactly one processor, we

have the following constraint:∑
p∈P

uj,p = 1, ∀j ∈ J. (2)

Additionally, the execution time and resource of all tasks as-

signed to the processor p should satisfy following constraints:∑
j∈J

tj · uj,p ≤ T, ∀p ∈ P, (3)

∑
j∈J

vj · uj,p ≤ Vp, ∀p ∈ P, (4)

where tj denotes the execution time of task j; T denotes the

time limit; vj denotes the resource required for task j; Vp

denotes the resource capacity of processor p.

The objective of traditional MTL is to minimize the collec-

tive loss of all tasks. We study the modeling and define the

MTL tasks specific to the edge computing scenario for better

understanding.

Definition 3. (MTL Tasks on the Edge) Given task importance
Ij , the execution time and resource limitations of Eq. (2) - (4),
an on-edge MTL tasks aims to obtain θ by

θ = argmin
∑
j∈J

∑
p∈P

Ij · Lj(θj) · uj,p, s.t. Eq.(2)− (4),

where Lj(θj) denotes the learning loss of task j, e.g., predic-
tion error and regularization terms.

Based on the above definitions, we formally define the

problem of task allocation with task importance for MTL on

the edge (TATIM Problem) as below:

Definition 4. (TATIM Problem) Given the execution time and
resource limitations, a TATIM problem is to obtain u by

max
u

∑
j∈J

∑
p∈P

Ij · uj,p, s.t. Eq. (2)− (4),

where u = [uj,p] denotes the task-allocation matrix; Ij can be
computed given θ from Definition 3 and J using Equation 1.

We found that the TATIM problem under the execution time

and resource limitations is in fact a 0-1 Knapsack problem.

Theorem 1. Task allocation problem with task importance is
a 0-1 multiply-constrained multiple Knapsack problem.

Proof. First of all, coming back to the traditional multiply-
constrained multiple Knapsack problem [24], there is a set

of |N | items, where each item i ∈ N is associated with a

weight wi, a volume oi and a profit ρi. Meantime, there is

also a set of |M | knapsacks, where each knapsack m ∈ M
has a maximum weight capacity Wj and volume capacity

Oj . The objective is to infer the positioned knapsack of

items χi,m = argmax
∑

i∈N
∑

m∈M ρi · χi,m, satisfying∑
m∈M χi,m = 1, ∀i ∈ N.

In our TATIM problem, each data-driven task j ∈ N
+ can

be regarded as an item i ∈ N
+ and each processor p ∈ N

+ can

be regarded as a knapsack m ∈ N
+. Similarly, the resource

and execution time requirement, i.e., vj , tj ∈ R for each data-

driven task corresponds to the weight and volume wi, oi ∈
R of each item. The importance of tasks Ij ∈ [0, 1] can be

regarded as the profit of items ρi ∈ [0, 1]. The allocation uj,p ∈
{0, 1} is equal to the positioning χi,m ∈ {0, 1}. Therefore, our

objective
∑

j∈J
∑

p∈P Ij ·uj,p is also equal to the objective of

the above Knapsack problem
∑

i∈N
∑

m∈M ρi ·χi,m and so as

the other three constraints.

As a result, the TATIM problem is equal to the multiply-

constrained multiple Knapsack problem which is NP-C.

Therefore, our TATIM problem is in general NP-complete.

Besides, the complicated computation to solve TATIM needs

to be conducted repeatedly due to the time-varying parameter

of task importance, making the problem solving challenging.

III. THE CLUSTERED REINFORCEMENT LEARNING (CRL)

MODEL

In this section, we first present an overview of the data-

driven approach for task allocation. We then introduce the

1043

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

background of reinforcement learning. At last, we give a

formal definition of the environment-dynamic task allocation

and propose our data-driven approach using Clustered Rein-

forcement Learning (CRL).

A. Data-driven Task Allocation Overview

In the previous section, we show that our TATIM problem

is in general 1) NP-complete 2) with time-varying parameters,

leading to complicated computations conducted repeatedly.

The key to efficiently allocate tasks on the edge lies in the

automatically adaptation to varying contexts.

As a remedy to such a challenge, we then propose the

data-driven task allocation. Recent years have witnessed a

trend of applying data-driven techniques for complicated prob-

lems in time-varying environments, including AlphaGO [25],

Intelligent logistics [26], Autonomous Mobility-on-Demand

system [27] and Human-level game control [28]. Basically,

data-driven techniques are particularly helpful for solving

complicated problems repeatedly with varying parameters,

because they not only help to model and reduce the envi-

ronmental randomness in multi-task scenarios but also help to

significantly enhance the computational efficiency due to the

fast inference phase when the solution is needed.1

Formally, given a task set J and the corresponding historical

feature space X , we are to develop a data-driven task alloca-

tion scheme with a loss function L(·) which maximize the

overall decision performance of the task allocation, i.e.,

u ← F(J,X).

B. Background of Reinforcement Learning

Next, we consider the proper approach to solve the TATIM

problem. First, in the previous section, we have proved that the

TATIM problem is in fact a Knapsack problem and therefore

NP-complete. Reinforcement learning (RL) is widely sug-

gested to efficiently solve such problems [25], [28]. Second,

decisions made by industrial systems can be highly repetitive,

thus generating an abundance of training data to support

complicated data-driven model. Based on the two reasons, we

applied the well-known RL to solve the TATIM problem.

In general, the RL works like this: at each decision epoch,

the agent will make a decision based on the current state of

the environment. Once the decision is made, a reward would

be provided to the agent and the state of the environment

would be updated for making future decisions. The agent tries

to maximize the cumulative rewards over time. With RL, our

TATIM problem is optimized in a Markov Decision Process

(MDP), which is a five-tuple: < S,A,P, r, λ> , where S
denotes the set of states; A denotes the set of actions; P
denotes the transition probability distribution; r denotes the

reward function and λ ∈ [0, 1] denotes the discount factor

for future rewards. Note that different optimization problems

have quite different objectives, constraints, and variables. To

adopt our TATIM problem, the different components of RL

1Though the training phase may be long, it merely needs to be conducted
once in advance.

needs to be specially designed. The detailed design of these

components in RL and MDP will be discussed next.

C. Environment-dynamic Task Allocation

However, RL should not be directly applied in our scenario,

where the environment is diverse over time and existing RL

approaches usually assume a fixed environment.

Novel Problem of Environment-dynamic Knapsacks.
In TATIM, the task importance is critical for environment

modeling and thus also important for RL. As we known, the

knowledge learned by the decision of an agent is rewarded ac-

cording to the environment. Once the task importance and the

corresponding environment is not close to reality, the decision

made by the agent will lead to poor decision performance.

However, due to the varying scenarios in MTL, the envi-

ronment matrix of RL usually changes over time in reality.

Recall the previous example where a self-driving car on the

highway and pedestrians usually do not occur, the task of

pedestrians detection is less important compared to other tasks.

Nevertheless, when driving around the school, pedestrians are

particularly frequent which makes the task of pedestrians de-

tection more important. Therefore, we see that the environment

is clearly diverse in different scenarios, especially when the

task importance is encoded in the environment of RL.2

In this regard, directly leveraging the RL model can easily

mismatch the environment and submitted less important tasks,

which leads to poor decision performance [29], [30]. We also

conduct an experiment to demonstrate the negative impact. It

shows a 46.28% reduction of performance when the environ-

ment is not accurate using existing RL.

To this end, we realize that our TATIM problem can be

regarded as a novel variant of the Knapsack problem. It is

even more challenging than the Multiply-constrained Multiple

Knapsack Problem proved in the previous section. This time,

additionally, the item value (i.e., task importance) can be

changed randomly over time, instead of being fixed in the

traditional Knapsack problem.

Clustered Approach for Environment Definition. Ac-

cordingly, to solve the TATIM problem, we are to learn

the current environment. Our idea is that the more similar

historical days, the more similar the environment is. Such

similarity can be measured by comparing the current scenarios

and configuration settings, e.g., sensing data, of the predicting

day and the historical days.

The overall process is illustrated in Fig. 6, which consists

of two parts, i.e., environment definition and data-driven task

allocation. In the figure, different days represent different

environments, and the darkness of each color represents the

different task importance. Through the analysis of historical

data, we establish an environment data set, i.e., historical

2Even in the same scenario, the environment can change over time, due
to the accumulating size of training data and the overwritten historical data
when the storage is insufficient. An experiment in the previous section also
indicates the fluctuation between historical and current task importance.

1044

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

Current
Environment e

Environment Definition

Historical Environment Set ε

Day 1 Day 2

Day 3 Day 4

Data-driven Task Allocation

Resource
Constraint V

Today

Environment-dynamic Task Allocation

Allocated Results u

Fig. 6: The illustration of environment-dynamic task allocation.

environment E . We define the historical environment E as the

collection of environment e, i.e.,

E = [e1, ej , · · · , eN ′], ∀j ∈ [1, 2, · · · , N ′],

where ej denotes the corresponding environment. For better

understanding, a formal mathematical structure of the environ-

ment is available in the following Section III-D.

Through environment definition that we can find a similar

environment e by clustering algorithms such as k Nearest
Neighbors (kNN), i.e.,

e = kNN(E , Z),

where Z denotes the sensing data. We then can make data-

driven task allocation based on the clustered environment

under the execution time and resource constraints.

D. Clustered Reinforcement Learning for Environment-
dynamic Task Allocation

Next, we propose key designs of our approach, i.e., the

environment modeling, state space, action space, reward func-

tion, and optimization, which should be specified based on our

TATIM problem.

Environment. A key component in the RL model is the en-
vironment, which is everything outside the agent, and changes

its state due to the action of the agent, and gives the agent

corresponding rewards. For an RL predictor, the environment

can be described as a matrix e which is a map of the agent, e.g.,

Maze problem. More specifically, one dimension represents

the subject types (e.g., neighboring car detection, traffic sign

detection, and pedestrian detection), and the other represents

the available processors (CPU processor, GPU processor,

sensors). The elements of the matrix can be viewed as a data-

driven task. It is formulated as follows:

e = [Ij × Vp]N×M , ∀Ij , Vp ∈ R,

where Ij denotes the corresponding task importance and Vp

denotes the corresponding processor capacity.

State space. We represent the state, which is the current task

selection of the system. More specifically, the state is defined

by a matrix S and the element of each position can be 0 or

1. Note that 1 represents the task is selected, otherwise, it is

not selected, which is formulated as follows:

S = [sij]N×M , ∀sij ∈ {0, 1}
Such a fixed state representation indicates that it can be

conveniently applied as an input to a neural network.

Algorithm 1 Clustered Reinforcement Learning (CRL)

Training Phase:
1: E ← historical environment s0 ← initial state Z ←

current scenarios and configuration settings.

2: e ← EnvironmentDefinition(E ,Z) � Find similar

environment.

3: while not yet reach the terminal state sN do
4: L(s, a|θ) ← (r +max

a
Q(s′, a|θ)−Q(s, a|θ))2 �

Update DNN parameters θ.

5: end while
6: θ∗ ← argminL(s, a|θ) � Obtain optimal parameter θ.

7: return e, s0, θ∗

Prediction Phase:
8: (e, s0, θ∗) ← initialization using the return value of the

training phase.

9: u ← F1((e, s0);θ
∗) � Make task allocation prediction.

10: return u

Action space. At each point in time, the scheduler may want

to select any subset of the N × M tasks. But this requires

a large action space of size 2N×M leading to unbearable

computation to learn on the edge. We keep the action space

small using a trick: we allow the agent to execute merely

one action in each time step. The action space is given by

{1, 2, · · · ,M}, where a = j means to conduct the jth task

for the current processor in the current time step. Hence, the

action space is defined as follows:

A = {a|a ∈ {1, 2, · · · ,M}}
In this way, we can greatly speed up our learning rate while

keeping the action space linear in M .

Reward Function. We craft the reward signal to guide the

agent towards desired solutions for our objective: maximize

overall task importance. Specifically, we set the reward at

each time step to
∑

j∈J Ij only if the agent reaches the

terminal state (i.e., all tasks in the current system are assigned

accordingly), where J is the set of tasks currently in the

system. Otherwise, the reward was set to 0. Hence,

r(t) =

{∑
j∈J Ij , if the agent reaches the terminal state

0, otherwise.

It is worth noting that the agent is set to not receive any

reward for intermediate decisions during a time step, which is

well-suited to apply to our real-world decision objectives.

Optimization. With the above key elements, we leverage

Deep Q-learning Q(s, a; θ, J) [31], where θ denotes the ad-

justable parameter vector of neural networks. It estimates the

value of executing an action a from a given state s. Formally,

given the feature space X which consist of the environment e
and the initial state s0, we have

u ← F1(J,X) = F1(J, (e, s0)) = Q(s, a; θ, J). (5)

Based on the above design, we propose the Clustered Rein-

forcement Learning (CRL) approach, as shown in Algorithm 1.

1045

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

Convergence Analysis. It has been proven that the Deep

Q-learning technique will gradually converge to the optimal

policy under stationary Markov decision process (MDP) envi-

ronment and sufficiently small learning rate [32]. Hence, the

proposed CRL predictor will converge to the optimal policy

when (i) the environment evolves as a stationary, memoryless

Semi-Markov Decision Process and (ii) the DNN is sufficiently

accurate to return the action associated with the optimal

Q(s, a) estimate.

IV. CRL-BASED LOCAL PROCESS WITH A COOPERATIVE

LEARNING FRAMEWORK

In this section, we first show that the CRL model should

not be directly applied due to the simulation limitations. We

then propose a Cooperative Learning approach based on both

CRL and Support Vector Machine (SVM) to fully leverage the

simulated and real-world data. At last, we briefly introduce the

design of the SVM model.

A. Introducing Local Process with Cooperative Learning

In the previous section, we present a detailed design of the

CRL model. However, the CRL model should not be directly

applied. In our scenario, the environment is diverse over time.

Although we can find similar environments in the historical

environment through simple clustering methods, there is a risk

that the environment is still not closed to the real environment.

That is especially true for edge devices without too much data,

whereas the RL model can confront with quite a few unseen

environments and it requires much environment observations

to cover all possible situations.

In this regard, directly leveraging the CRL model can

still mismatch the environment and submitted less important

tasks, which leads to poor decision performance [30]. We also

conduct an experiment to demonstrate the negative impact.

Based on our CRL model, when the environment is not

accurate, it leads to a 28.84% reduction of performance.

To tackle the challenge, our idea is to leverage runtime data

to adjust the decision of the CRL model.

Accordingly, we propose a cooperative learning approach as

shown in Fig. 7, which is especially well-suited to solve this

problem. The proposed cooperative learning approach contains

two components: 1) a general process with a huge environment

definition data, and 2) a local process with few real-world

data. Formally, let C and R be the feature spaces of the

environment definition data, i.e., C = {(e, s0)}, and real-world

data, respectively. Let F(·) denotes our cooperative learning

model, which can be represented more specifically as:

F(J,X) = F(J, (C,R)) = w1F1(J, C) + w2F2(J,R), (6)

where F1(·) and F2(·) denote the general process and local

process; w1 and w2 denote the weight of the corresponding

model results, respectively. In addition, the task-allocation

matrix u is outputted by our cooperative learning model F(·),
i.e., u ← F(J, (C,R)).

CRL
Predictor

SVM
Predictor

C
ooperative L

earning

 General Process

 Local Process

Feature
Engineering

 Environment
Definition

Real-world
Data

Real-world
Data

Current
Environment

Current
Environment

Task Allocation
Result

Task Allocation
Result

Fig. 7: Framework of Cooperative Learning for task allocation.

B. Brief Design of Local Process

For our cooperative learning, We have discussed the first

component of the general process using CRL in the previous

section. Now we introduce the design of the local process.

As for the second component of local process, we compare

several state-of-the-art models of SVM, AdaBoost, and Ran-

dom Forest. We select SVM because of its highest accuracy.

Formally, given the target tasks feature values X , our objective

is to develop an SVM predictor F2(·) which infers the target

tasks allocation u. This can be formulated as follows:

u ← F2(J,X) = SVM(X ;w, J) (7)

where w denotes its parameter vector.

In the following, we are to briefly introduce the design of

loss function and feature engineering of the local process of

SVM predictor.

C. Loss Function of Local Process

Formally, let R be the feature spaces of the real-world data,

sample k ∈ R usually consists of two parts. One is a vector

xk that is regarded as the input feature values; the other is a

scalar yk that is the desired output of the model. Then, we

define the loss function Lk(w) of our SVM predictor F2(·) as

follows:

Lk(w) =
1

2
‖w‖2 + 1

2
max{0; 1− ykw

Txk}2, (8)

where w denotes its parameter vector; wT denotes the trans-

pose of w and ‖ · ‖2 denotes the L2 norm. Finally, our

optimization process is to find the optimal parameter vector

w∗ that minimize the loss function Lk(w) on a collection of

training dataset R. Hence, w∗ = argmin 1
|R|
∑

k∈R Lk(w).

D. Feature Engineering of Local Process

In most real-world scenarios, e.g., industry domain, it is

either costly or even impossible to obtain the data on envi-

ronments and configurations of tasks; we usually do not have

the luxury to obtain enormous data where local predictor can

be trained with irrelevant features automatically eliminated.

As such the challenge is to select the proper feature set

for our local predictor. Thus, we propose a domain-assisted

feature engineering approach which uses domain knowledge

to create features relevant to the problem at hand. The feature

set consists of the following two types of features, naming

domain features and general features, respectively. We list our

features in Table I.

General features. Overall, the general features should have

some universality and can be easily applied to other scenarios.

1046

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The description of features in the local process of SVM predictor.

Feature Type Feature Description

General
Past Success The number of cases that a task is selected in the optimal decision in the past

Prediction Accuracy The similarity between the predicted (e.g., COP) and the real for a task in the past

Domain

Building The building that the operating chiller is deployed in

Model Type The model of the operating chiller

Operating Power The power measured by kilowatts for the operating chiller

Weather Condition The description of weather condition in a time interval

Outdoor Temperature The outdoor temperature measured by Celsius in a time interval

Latest Cooling Load The last recorded cooling load assigned on this chiller

Water Mass Flow Rate The mass of water flowing per second, measured by kg/s

Water Temperature Difference The difference between the returned and supplied chilled water temperature

More specifically, it should reflect the decision performance

of a data-driven task in the statistical view over the historical

data. We consider the following two factors: 1) Past Success

which refers to the number of cases that a task is selected in

the optimal decision in the past. In general, if the industrial

demand, configuration, and environment do not change too

much, a task selected in the past will likely be selected again

in the current period; 2) Prediction Accuracy which is the

similarity between the predicted performance and the real

performance for a given task in the past. This is also an

important factor since an accurate prediction indicates our final

decision making can be more reliable.

Domain features. Obviously, the domain features are

closely related to specific scenarios. Recall the previous ex-

ample in the driver-less car, driving operation decision is

critical to driver-less car safety, which consists of the following

specific characteristics such as engine status, speed, radar data,

GPS data and etc. While in this paper, we focus on the indus-

trial field where chiller sequencing is a common but highly

important industrial operation in energy-efficient buildings,

which consists of the following specific features: 1) Meteo-

rological information such as temperature and weather drive

the cooling demand imposed on the chillers; 2) Mechanical

information such as the model type, building, operating power,

water temperature difference, flow rate, and the recent cooling

load are used to capture the chiller specific characteristics.

V. PERFORMANCE EVALUATION

In this section, we investigate the performance of DCTA

with extensive experiments over industrial operation (e.g.,

AIOps) scenarios and transfer learning applications, using

real-world data obtained from multiple data-driven building

management systems.

A. Background of the Simulated Green-building System

Before the setting of our simulation, we begin by introduc-

ing the real-world green-building system to be simulated [22].

The green-building system conducting industrial operations

assisted with machine learning. It is deployed for one week

in January 2019, in a high-rise office building in Hong Kong

which serves more than three thousand people. As a facility

in building, chiller is a machine generate cooling power in

commercial buildings and chiller operation is a significantly

Raspberry Pi .3
×9

A+B+B B BA+ A+B+

Laptop

Fig. 8: The Network Topology and Hardware Choice in the Experiments,
where Raspberry Pi are with model types of A+, B, and B+.

important operation, which aims to select run-time configura-

tions of the chiller so that the overall system serves the cooling

demand while minimizes the energy consumption.

In the green-building system, the equipment of chillers,

pumps, air-handling unit, and cooling tower differ greatly

in operation, maintenance, and services. The data of each

equipment in the chiller plant are captured and transmitted by

10 edge nodes, including one operation node conducting and

recording operations, and nine sensing nodes collecting run-

time data. To process data from different types of equipment, a

centralized approach is leveraged, where edge node transmits

data to the controller, and controllers are responsible for task

allocation and decision making for the edge nodes. Finally, the

operation node conducts data-driven COP prediction and send

control sequences to devices. Other sensing nodes without

computation power are merely used to collect data. The

simulation will be conducted according to the above setting to

better simulate the real-world green-building system.

B. Experiment Setup

For generating transfer learning tasks, we use a real-world

building operation dataset released in [22], which contains

four-year operation data for three high-rise commercial build-

ings in a metropolitan, collected by a major building service

provider. The total data is more than 1 TB. Supported 50

transfer-learning tasks include independent multi-task learn-

ing, self-adapted multi-task learning and clustered multi-task

learning based on SVM, AdaBoost and Random Forest.

Our simulation consists of nine Raspberry Pi (version 3)

and one laptop computer as shown in Fig. 8, which are

all interconnected via WiFi under a star network topology

in an office building. This represents an edge computing

environment where the computational capabilities of edge

nodes are heterogeneous. The simulation parameters, e.g., the

1047

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: The processing time of task allocation
system with different number of processors.

Fig. 10: The processing time of task allocation
system with different data input sizes.

Fig. 11: The processing time of task allocation
system with different bandwidth limits.

computation time of the Raspberry Pi A+ is 4.75×10−7 s/bit,

which is based on the settings from [33].

C. Comparison Baselines and Metrics

Comparison Baselines. We employ the following state-of-

the-art task allocation methods as baselines. It is worth noting

that the first two are some of the non-data-driven methods

(e.g., synthetic method) that have been widely suggested, and

the last two are the data-driven methods we proposed.

• Random Mapping (RM) where each task is processed

at different edge devices with equal probability [33]. In

other words, tasks are randomly assigned.

• Distributed Machine Learning (DML) distributes tasks

to multiple computing nodes, e.g., allocating the training

iteration either to edge devices or to the cloud [34].

• Clustered Reinforcement Learning (CRL) conducts al-

location with our clustered reinforcement learning model.

• Data-driven Cooperative Task Allocation (DCTA)
leverages an SVM model to adjust the decision of the

CRL model.

Evaluation Metrics. For a task allocation method, the abil-

ity to provide credible decision performance under execution

time limits is crucial to all stakeholders. Time is always the

first concern, and we measure the Processing Time (PT), which

is the time the main device needs to partition the application

and receive the output of the decision making. Formally,

PT = ts − tc,

where ts denotes the time instant when the industry decision

is made; tc denotes the time when each experiment start.

D. Experiment Results

Result on Processing Time. Figure 9 shows the processing

time as a function of processors. Consistent with our intuition,

as the number of processors increases, the processing time of

the above allocation methods gradually decreases. We see that

DCTA can outperform RM, DML, and CRL by as much as

3.24, 2.32 and 2.01 times, respectively. On average, DCTA

outperforms RM, DML, and CRL by 2.70, 2.05, and 1.80

times. That is because DCTA leverages data-driven techniques

to capture the dynamic task importance and reduces the

number of less important prediction tasks to perform.

Then, we compare the processing time of DCTA with that

of RM, DML, and CRL for different average input data sizes.

As we can see in Fig. 10, the processing time of our DCTA

is always outperformed other state-of-the-art methods. For

example, our DCTA has an improvement that is 2.71, 1.83,

and 1.68 times to that of RM, DML, and CRL at the average

input data size of 500 Mb. That is because our DCTA obtains

the importance of each task which is time-dynamic changing,

and then allocates to the most suitable edge devices to execute.

Finally, Figure 11 shows the processing time as a function of

network bandwidth. It is well known that network bandwidth

affects the time of data transmission, and transmission time

is also the main component of processing time. Thus, as the

network bandwidth increases, the processing time also gradu-

ally decreases. But it is worth noting that our DCTA always

outperforms RM, DML and CRL by 2.68, 1.94, and 1.71 times

on average, respectively. That is mainly because our DCTA

leverages data-driven techniques to capture the importance of

each task and merely perform the most important tasks.

VI. RELATED WORK

Task Allocation has been intensively researched in cloud

and mobile cloud computing systems [35]–[39]. Recent years

have witnessed great prospects exhibited down to the edge,

e.g., from OpenCL (2008) [40] to AWS IoT Greengrass (2017)

[41] and Microsoft Azure IoT Edge (2018) [42]. Under edge

computing, existing works on task allocation either 1) partition

the machine-learning model and its input, or 2) are conducted

according to different objectives.

First, task allocation in many distributed machine learning

systems [34], [43]–[45] have successfully demonstrated their

effectiveness to enable big-data applications deployed on a

large number of machines. For example, when allocating task

for deep neural network (DNN), Neurosurgeon [46] identifies

a strategy in a fine-grained layer level between edge and

cloud. A similar approach presented in [47] proposes a design

guideline for DNN partitioning based on the layer-wise trade-

off study. These methods provide the capability to accelerate

the execution of a single data-driven task on the edge.

Second, existing works also consider different objectives for

task allocation [48], [49]. Examples also include reducing the

energy consumption of edge device while predefined delay

constraint is satisfied [11] [12], finding a proper trade-off

between the energy consumption and the execution delay [13],

and minimizing the overall application execution cost [10]. A

majority of these works are not designed for machine learning

tasks. Nevertheless, though these techniques may consider a

multi-task setting, they regard all submitted tasks as equally

important, which leads to inefficient resource allocation at a

task level when directly applied for MTL.

Different from these works, our study investigates task al-

location for multiple machine-learning tasks without knowing

1048

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

task priority. We capture and leverage task importance to

accelerate the overall learning process, which sheds some new

light on task allocation for MTL on the edge.

Machine learning for Complicated Optimization Prob-
lems has been successfully employed especially with time-

varying parameters and complicated solutions which are re-

peatedly conducted [50], [51]. Examples include intelligent

logistics [26], code optimization [52], [53], task schedul-

ing [54], [55]. Our cooperative approach is closely related to

ensemble learning where multiple models are used to solve an

optimization problem. Ensemble learning is shown to be useful

when scheduling parallel tasks [56] and optimizing application

memory usage [57]. This work is the first attempt in applying

ensemble techniques to optimize task allocation of MTL with

task importance on the edge.

VII. DISCUSSION

Naturally, there is room for further work and possible

improvements. We discuss a few points here.

Leveraging Existing Edge Nodes. Admittedly, it is possi-

ble to fully redeploy hardware after introducing data-driven

techniques and provide strong computational power within

a low purchasing budget [58]. However, for the scalability

purpose, only an incremental software installment for the real-

world system is conducted for edge computing, with a minimal

revision of hardware for the current system. That is to say, only

the current commercial off-the-shelf components in the system

are leveraged for computation. The proposed system avoids

deploying any additional equipment within the real-world sys-

tem, e.g., without adding high-performance servers which may

be in low purchasing price. Such a design ensures privacy and

enables low-intrusive or even non-intrusive installment, which

are both critical for scalability of the proposed approach. We

understand that we may sacrifice the probability to obtain

more sensing data and have even better prediction performance

if we avoid deploying additional equipment inside the local

system for the scalability purpose. As for the case where

powerful edge nodes are available, the proposed approach can

be easily extended to support the case by changing the budget

constraints in the problem formulation.

Data Scarcity on the Edge. For industrial edge-computing

applications, data scarcity often exists even though cloud

storage can still cooperate for big data. The data scarcity is

the result from 1) prohibitive cost or inherent difficulty in

obtaining required proper training samples, 2) with respect

to the application complexity and uncertainty. First, when

considering the privacy concern, storage limitations, budget,

and real-time requirements, partial or even the whole data

set is not possible to be stored, transmitted and processed

for the edge-computing applications, compared with that of

cloud-computing applications. Meantime, due to the instability

of the sensing devices, data loss also occurs frequently in

some environments. Worse still, an industrial application can

be complex or highly uncertain which requires a larger amount

of data. For example, many robots for text production, such

as search engines or translation programs, have difficulties in

finding sufficient samples for each context. The reason lies in

the context of words which can result in ambiguities and there

exists a huge amount of possible contexts. Thus, we believe

moves should be conducted for the data scarcity issue on the

edge and we provide an edge-based transfer learning.

Real-time Sensing Data. Real-time sensing data facilitate

the learning process by incorporating the run-time observations

on environmental dynamics. In order to capture the run-time

effect from real-time sensing data, we discuss two learning

modes, i.e. the offline and online modes. First, the offline mode

divides historical samples into multiple clusters in advance,

e.g., using K-means. When the real-sensing data is coming,

the system selects the most similar clustered samples to train

and predict. Its drawback lies in the possibly low prediction

accuracy due to the offline clustering. Second, the online mode

prepares the training samples in a run-time manner by finding

those which are the most similar with the real-time data, e.g.,

using KNN. This mode guarantees a high prediction accuracy

but could lead to extra time to choose the proper training data.

In this paper, we adopt the online mode to guarantee that our

final decision making can be more reliable. The additional time

overhead can be significantly reduced through our proposed

data-driven task allocation mechanism.

Multi-task Assumption. In this study, our approach is

designed to tackle time-varying environments. We assume that

1) there are multiple related machine-learning tasks, and 2)

there is no strong pre- and post-dependency, which is also a

prerequisite for performing multi-task transfer learning. Thus,

those cases 1) under single-task settings, or 2) under multi-

task settings but with the sequential dependency between tasks,

are beyond the scope of this paper. It would be an interesting

future work to extend our approach to those scenarios.

VIII. CONCLUSION

Edge computing for machine learning has become a heated

research topic. In this paper, we focus on task allocation for

MTL scenarios by introducing task importance and make the

following contributions. First, we reveal that it is important to

measure the impact of tasks on overall decision performance

improvement and quantify task importance. We also observe

the long-tail property of task importance, which serves as a

key metric to guide task allocation, and facilitates resource

saving from less important tasks and accelerates the overall

learning process. We formally define the TATIM problem

of task allocation with task importance for MTL. Second,

we show TATIM is in fact a variant of Knapsack problem,

which is NP-complete. Accordingly, we propose a Data-driven

Cooperative Task Allocation (DCTA) approach to accelerate

the computational efficiency without performance degradation.

Third, we evaluate the performance of our DCTA approach by

applying it to a real-world industrial operation (e.g., AIOps)

scenario. Experiments show that our DCTA approach can save

3.24 times of processing time compared to the state-of-the-

art. We believe that our DCTA approach offers an effective

and practical mechanism for reducing the required resource

associated with performing MTL on edge devices.

1049

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. L. Hutchinson, E. Antono, B. M. Gibbons, S. Paradiso, J. Ling, and
B. Meredig, “Overcoming data scarcity with transfer learning,” arXiv
preprint arXiv:1711.05099, 2017.

[2] C. Yuan, W. Hu, G. Tian, S. Yang et al., “Multi-task sparse learning
with beta process prior for action recognition,” in IEEE CVPR, 2013.

[3] Z. Wu, C. Valentini-Botinhao, O. Watts, and S. King, “Deep neural
networks employing multi-task learning and stacked bottleneck features
for speech synthesis,” in IEEE ICASSP, 2015, pp. 4460–4464.

[4] S. Emrani, A. McGuirk, and W. Xiao, “Prognosis and diagnosis of
parkinson’s disease using multi-task learning,” in ACM SIGKDD, 2017.

[5] J. Zhou, L. Yuan, J. Liu, and J. Ye, “A multi-task learning formulation
for predicting disease progression,” in ACM SIGKDD, 2011.

[6] T. Idé, D. T. Phan, and J. Kalagnanam, “Multi-task multi-modal models
for collective anomaly detection,” in IEEE ICDM, 2017, pp. 177–186.

[7] T. Biswas, P. Kuila, and A. K. Ray, “Multi-level queue for task
scheduling in heterogeneous distributed computing system,” in Advanced
Computing and Communication Systems (ICACCS), 2017 4th Interna-
tional Conference on. IEEE, 2017, pp. 1–6.

[8] B. Hong and V. Prasanna, “Adaptive allocation of independent tasks
to maximize throughput,” IEEE Transactions on Parallel & Dis-
tributed Systems, no. 10, pp. 1420–1435, 2007.

[9] Y. Jiang, Y. Zhou, and Y. Li, “Reliable task allocation with load
balancing in multiplex networks,” ACM Transactions on Autonomous
and Adaptive Systems (TAAS), vol. 10, no. 1, p. 3, 2015.

[10] S. Sundar and B. Liang, “Offloading dependent tasks with communica-
tion delay and deadline constraint,” in IEEE INFOCOM, 2018.

[11] S. Cao, X. Tao, Y. Hou, and Q. Cui, “An energy-optimal offloading
algorithm of mobile computing based on hetnets,” in IEEE ICCVE, 2015.

[12] Y. Wang, M. Sheng, X. Wang et al., “Mobile-edge computing: Partial
computation offloading using dynamic voltage scaling,” IEEE Transac-
tions on Communications, vol. 64, no. 10, pp. 4268–4282, 2016.

[13] Y. Mao, J. Zhang, S. Song et al., “Power-delay tradeoff in multi-user
mobile-edge computing systems,” in IEEE GLOBECOM, 2016.

[14] Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation offloading
for multicore-based mobile devices,” in IEEE INFOCOM, 2018.

[15] P. Yang and J. He, “Heterogeneous representation learning with struc-
tured sparsity regularization,” in IEEE ICDM, 2016.

[16] K. Lin et al., “Multi-task feature interaction learning,” in SIGKDD, 2016.
[17] P. Gong, J. Ye, and C. Zhang, “Robust multi-task feature learning,” in

ACM SIGKDD, 2012, pp. 895–903.
[18] Y. Zhang and Q. Yang, “Learning sparse task relations in multi-task

learning.” in AAAI, 2017, pp. 2914–2920.
[19] K. Lin and J. Zhou, “Interactive multi-task relationship learning,” in

IEEE ICDM, 2016, pp. 241–250.
[20] D. Oyen, T. Lane et al., “Leveraging domain knowledge in multitask

bayesian network structure learning.” in AAAI, 2012.
[21] D. Isele, M. Rostami, and E. Eaton, “Using task features for zero-shot

knowledge transfer in lifelong learning.” in IJCAI, 2016.
[22] Z. Zheng, Q. Chen, C. Fan, N. Guan, A. Vishwanath, D. Wang, and

F. Liu, “Data driven chiller sequencing for reducing hvac electricity
consumption in commercial buildings,” in ACM e-Energy, 2018.

[23] A. R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik, and S. Savarese,
“Taskonomy: Disentangling task transfer learning,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.

[24] H. Shachnai et al., “On two class-constrained versions of the multiple
knapsack problem,” Algorithmica, vol. 29, no. 3, pp. 442–467, 2001.

[25] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[26] X. Li, “Development of intelligent logistics in china,” in Contemporary
Logistics in China. Springer, 2018, pp. 181–204.

[27] R. Iglesias, F. Rossi, K. Wang, D. Hallac, J. Leskovec, and M. Pavone,
“Data-driven model predictive control of autonomous mobility-on-
demand systems,” in IEEE ICRA, 2018, pp. 1–7.

[28] V. Mnih, K. Kavukcuoglu et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[29] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data centers,”
in 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), 2015, pp. 455–468.

[30] H. Hu, L. Chen, B. Gong, and F. Sha, “Synthesize policies for transfer
and adaptation across tasks and environments,” in Advances in Neural
Information Processing Systems, 2018, pp. 1176–1185.

[31] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang,
“A hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning,” in IEEE ICDCS, 2017.

[32] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[33] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,” in Commu-
nications (ICC), 2016 IEEE International Conference on, 2016, pp. 1–6.

[34] S. Teerapittayanon, B. McDanel et al., “Distributed deep neural networks
over the cloud, the edge and end devices,” in IEEE ICDCS, 2017.

[35] F. Liu, P. Shu, and J. C. Lui, “Appatp: An energy conserving adaptive
mobile-cloud transmission protocol,” IEEE transactions on computers,
vol. 64, no. 11, pp. 3051–3063, 2015.

[36] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing
resource-poor mobile devices with powerful clouds: architectures, chal-
lenges, and applications,” IEEE Wireless communications, vol. 20, no. 3,
pp. 14–22, 2013.

[37] T. Zhang, X. Zhang, F. Liu, H. Leng, Q. Yu, and G. Liang, “etrain:
Making wasted energy useful by utilizing heartbeats for mobile data
transmissions,” in 2015 IEEE 35th International Conference on Dis-
tributed Computing Systems. IEEE, 2015, pp. 113–122.

[38] J. Park, H. Byun, and J.-R. Lee, “Bio-inspired load-balancing framework
for loosely coupled heterogeneous server systems,” IEEE Transactions
on Computers, vol. 65, no. 11, pp. 3280–3292, 2016.

[39] Y. Jin, F. Liu, X. Yi, and M. Chen, “Reducing cellular signaling traffic
for heartbeat messages via energy-efficient d2d forwarding,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 1301–1311.

[40] The Khronos OpenCL Working Group, ”OpenCL-The open standard for
parallel programming of heterogeneous systems”. https://www.khronos.
org/opencl/, January 2019.

[41] AWS, ”IoT Greengrass”. https://aws.amazon.com/cn/greengrass/, 2019.
[42] Microsoft, ”Azure IoT Edge”. https://azure.microsoft.com/zh-cn/

services/iot-edge/, January 2019.
[43] K. Hsieh, A. Harlap, N. Vijaykumar et al., “Gaia: Geo-distributed

machine learning approaching lan speeds.” in NSDI, 2017.
[44] E. P. Xing, Q. Ho, W. Dai, J.-K. Kim et al., “Petuum: A new platform

for distributed machine learning on big data,” in ACM SIGKDD, 2015.
[45] M. Li, D. G. Andersen et al., “Communication efficient distributed

machine learning with the parameter server,” in NIPS, 2014.
[46] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars et al.,

“Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 615–629, 2017.

[47] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host
partitioning of deep neural networks with feature space encoding
for resource-constrained internet-of-things platforms,” arXiv preprint
arXiv:1802.03835, 2018.

[48] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in IEEE INFOCOM, 2019.

[49] S. Chen, L. Jiao, L. Wang, and F. Liu, “An online market mechanism
for edge emergency demand response via cloudlet control,” in IEEE
INFOCOM, 2019.

[50] F. Samreen, Y. Elkhatib, M. Rowe, and G. S. Blair, “Daleel: Simpli-
fying cloud instance selection using machine learning,” arXiv preprint
arXiv:1602.02159, 2016.

[51] Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,”
Proceedings of the IEEE, 2018.

[52] S. Chen, J. Fang, D. Chen et al., “Adaptive optimization of sparse matrix-
vector multiplication on emerging many-core architectures,” 2018.

[53] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-end
deep learning of optimization heuristics,” in IEEE PACT, 2017.

[54] J. Ren, L. Gao, H. Wang et al., “Optimise web browsing on heteroge-
neous mobile platforms: a machine learning based approach,” 2017.

[55] S. Chen, J. Fang, D. Chen, C. Xu, and Z. Wang, “Optimizing sparse
matrix-vector multiplication on emerging many-core architectures,”
arXiv preprint arXiv:1805.11938, 2018.

[56] M. K. Emani and M. O’Boyle, “Celebrating diversity: a mixture of
experts approach for runtime mapping in dynamic environments,” in
ACM SIGPLAN Notices, vol. 50, no. 6. ACM, 2015, pp. 499–508.

[57] V. S. Marco, B. Taylor, B. Porter, and Z. Wang, “Improving spark
application throughput via memory aware task co-location: A mixture
of experts approach,” in ACM Middleware, 2017, pp. 95–108.

[58] P. K. Agyapong et al., “Design considerations for a 5g network archi-
tecture,” IEEE Communications Magazine, vol. 52, no. 11, 2014.

1050

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 07:03:17 UTC from IEEE Xplore. Restrictions apply.

