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Abstract—As MapReduce is becoming ubiquitous in large-scale data analysis, many recent studies have shown that the performance

of MapReduce could be improved by different job scheduling approaches, e.g., Fair Scheduler and Capacity Scheduler. However, most

exiting MapReduce job schedulers focus on the scenario that MapReduce cluster is stable and pay little attention to the MapReduce

cluster with dynamic resource availability. In fact, MapReduce cluster resources may fluctuate as there is a growing number of Hadoop

clusters deployed on hybrid systems, e.g., infrastructure powered by mix of traditional and renewable energy, and cloud platforms

hosting heterogeneous workloads. Thus, there is a growing need for providing predictable services to users who have strict

requirements on job completion times in such dynamic environments. In this paper, we propose, RDS, a Resource and Deadline-aware

Hadoop job Scheduler that takes future resource availability into consideration when minimizing job deadline misses. We formulate the

job scheduling problem as an online optimization problem and solve it using an efficient receding horizon control algorithm. To aid the

control, we design a self-learning model to estimate job completion times. We further extend the design of RDS scheduler to support

flexible performance goals in various dynamic clusters. In particular, we use flexible deadline time bounds instead of the single fixed job

completion deadline. We have implemented RDS in the open-source Hadoop implementation and performed evaluations with various

benchmark workloads. Experimental results show that RDS substantially reduces the penalty of deadline misses by at least 36 and

10 percent compared with Fair Scheduler and Earliest Deadline First (EDF) scheduler, respectively. In a Hadoop cluster running

partially on renewable energy, the experimental result shows the green power based resource prediction approach can further reduce

the penalty of deadline misses by 16 percent compared to Auto-Regressive Integrated Moving Average (ARIMA) prediction approach.

Index Terms—MapReduce, job scheduling, deadline-aware, dynamic resource availability, horizon control, job completion times
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1 INTRODUCTION

TODAY, a large amount of data has to be collected due to
the growing number of Internet services andWeb appli-

cations from enterprises. As rising of the data size, technolo-
gies for analyzing big data are evolving rapidly and there is
significant interest in new analytic approaches such as Map-
Reduce. For example, the Data warehouse Hadoop (i.e., the
open source implementation of the MapReduce program-
ming model) cluster at Facebook contains 3000 machines
and hosts on average 25000 MapReduce jobs per day [1].
However, study [2] has shown that current use of Hadoop
in research and enterprises still has significant room for
improvement on the performance of MapReduce jobs and
the utilization of Hadoop clusters. Although many MapRe-
duce jobs are delay tolerant, there are still some jobs that

have deadline constraints [3], [4]. One example is generating
statistics of user log information on e-commerce websites
which will be later used for advertisement placement opti-
mizations or personalized content recommendations. The
site performance and the revenue for the company are
directly affected by whether or not jobs can finish within a
given amount of time.

Unfortunately, it is challenging to meet job deadlines
based on current Hadoop platforms. First, as jobs have
diverse resource demands, it is difficult to estimate the
desired resource amount for individual jobs to avoid its
deadline miss. Second, MapReduce clusters are usually
shared by multiple jobs and the scheduling approach of
these jobs can affect job completion times [3]. Thus, all-
ocating sufficient resources alone may not guarantee job
completion time effectively. While existing schedulers in
Hadoop, such as the default FIFO Scheduler, Fair Scheduler,
Capacity Scheduler, the RAS Scheduler [5], and their varia-
tions [6], [7], optimize job completion time without con-
sidering deadlines, there are recent studies that aim to
guarantee job deadlines in Hadoop workloads by estimat-
ing job completion time and manipulating job queue order-
ing [3] or task scheduling [4].

As there is a growing number of MapReduce clusters
deployed in hybrid systems, it further complicates the prob-
lem. For example, eBay [8] and Yahoo! [9] employ MapRe-
duce to generate reports and answer historical queries (i.e.,
batch jobs), while deploying other platforms (e.g., Spark
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and Storm) at the same time to calculate key metrics in real-
time. In this case, the cluster resource will be first reserved
for these real-time jobs. Thus, the available resource for
MapReduce jobs may become dynamic over time. There are
more scenarios may lead the resources available to MapRe-
duce jobs quite dynamic, such as such as Greenhadoop at
Rutgers university [6] and a green datacenter at the HP
labs [10], and the abrupt termination of market-based
resources. The dynamics in the capacity of Hadoop clusters
pose significant challenges on satisfying job deadlines. First,
it is hard to estimate job completion time with dynamically
available resources. The prediction models should be robust
to the varying cluster capacity. Second, job execution and
task scheduling become more complicated. When the
amount of available resources drops, high priority jobs or
jobs with approaching deadlines should be prioritized to
improve the application performance or revenue.

In this work, we find that deadline violations in MapRe-
duce workloads may be significantly minimized by exploit-
ing the dynamics in resource availability and the flexibility
in Hadoop task scheduling. To this end, we propose, RDS, a
Resource and Deadline-aware Hadoop job Scheduler that
dynamically allocates resources to different jobs based on
the prediction of resource availability and job completion
times. RDS temporarily delays low priority jobs or jobs with
distant deadlines in hopes that therewill be sufficient resour-
ces in the future to compensate the slowdown caused to
these jobs. We develop a self-learning fuzzy model for esti-
mating a job’s completion time. The fuzzy model performs
fine-grained job completion time estimation and self-adapta-
tion at every measurement interval. We use a simple but
effective model to predict future resource availability based
on recent history. We formulate Hadoop job scheduling as
an optimization problem based on the prediction models of
the job completion time and the resource availability. We
design an efficient receding horizon control (RHC) algorithm
to derive the online solution. Its solution is a task resource
allocation matrix that minimizes job deadline misses consid-
ering future resource availability. We develop and imp-
lement the RDS scheduler in the open-source Hadoop
implementation and perform comprehensive evaluations
with various Hadoop workloads. Experimental results show
that RDS effectively reduces job deadline misses by at least
36 and 10 percent compared to Fair scheduler and the earliest
deadline first (EDF) scheduler, respectively.

A preliminary version of this paper appeared in [11]. In
this manuscript, we have extended the RDS design from an
adaptive job scheduling approach to a holistic performance
aware job scheduling system for various dynamic clusters.
More specifically, wemake the following new contributions.

� We have used a service level objective (SLO) with
two time bounds, thard and tsoft, in the decay function
to discount the data throughput from jobs with vio-
lated SLOs while scheduling jobs.

� We have integrated green power prediction tech-
nique with the deadline aware job scheduling
approach (i.e., RDS scheduler) to further improve the
system performance in dynamic Hadoop clusters. In
a Hadoop cluster running partially on renewable
energy, the new experimental result shows the green

power based resource prediction approach can further
reduce the penalty of deadline misses by 16 percent
compared toARIMAprediction approach.

� We have demonstrated that the proposed RHC strat-
egy achieves closed-loop stability independent of
the performance parameters. We have carried out
new experiments and analysis with the extended
approach, and studied the impact of different dead-
line settings (i.e., hard and soft time bounds) on sys-
tem performance.

� We have conducted new experiments to evaluate
the performance and impact of different dynamic
resource prediction approaches. We have also ana-
lyzed the relationship between the system overhead
cost and various configurations.

The rest of this paper is organized as follows. Section 2
gives motivations on resource and deadline aware Hadoop
scheduling. Section 3 describes the design of RDS. Section 5
gives details on system implementation. Section 6 presents
the experimental results. Section 7 reviews related work.
Section 8 concludes the paper.

2 MOTIVATION

We first introduce two dynamic clusters in a production
datacenter and a research institution respectively. We then
show that Hadoop job scheduling should be deadline aware
in order to provide predictable services to users. We use con-
crete examples to demonstrate that existing Hadoop job
schedulers are ineffective in meeting deadlines. Finally, we
discuss the practical issues when applying EDF, the theoreti-
cal optimal scheduler, in real and dynamic Hadoop systems.

2.1 Cluster Trace Analysis

To understand the resource dynamics in production cloud
datacenters, we have conducted an analysis of the time-
varying capacity trace from a production cluster at Goo-
gle [12]. Fig. 1a demonstrates the number of machines avail-
able in the cluster can fluctuate significantly over time. This
is due to the application of power-aware resource provi-
sioning approach based on machine turn-on and turn-off
for energy saving. We aim to provide a solution to this
dynamic capacity environment by finding the optimal task
scheduling approach to improve application performance
while considering the cost of scheduling reconfigurations.

As the environmental impact of datacenters rapidly
grows, the industry has started to explore building green
datacenters that are powered by renewable energy. For
example, HP Lab built up the Net-Zero Energy datacenter
recently [10]. Unlike traditional energy, the intermittency of

Fig. 1. Dynamic production and Hadoop clusters.
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renewable energy makes it very hard to maintain a stable
cluster resource availability to process workloads. Goiri
et al. proposed GreenHadoop [6], a MapReduce framework
for Parasol, a prototype green cluster built in Rutgers Uni-
versity. Fig. 1b shows that GreenHadoop has dynamic
resource availability during 24 hours since it is powered by
solar energy and uses electrical grid as a backup. It demon-
strates that the available resource of Hadoop cluster could
be highly dynamic due to the time-varying power supply.

The above analysis suggests that the benefit of dynamic
capacity provisioning is apparent for production datacen-
ters from the perspective of both economics and environ-
ments. However, it also brings up a challenging task to
manage dynamic datacenter clusters. In order to further
explore this problem, we conduct a case study as follows.

2.2 Case Study

We created a 5-node virtual Hadoop cluster in our univer-
sity cloud testbed and ran two jobs using different schedu-
lers. The cluster was configured with one master and four
slave nodes. All the slave nodes shared a pool of CPU
resources. We dynamically changed the resources allocated
to the cluster using VMware’s distributed resource sched-
uler to emulate the dynamics in resource availability of the
cluster. The total resource was evenly distributed to each
slave node. The master node was allocated a fixed capacity.
We ran two different wordcount [13] jobs. Two jobs have dif-
ferent input sizes, resource demands and deadlines. Table 1
gives their information.

Fig. 2 shows the performance of three schedulers in the
dynamic cluster. Note that the CPU demand in Table 1 is
the cumulative resource requirement for running individual
jobs. The GHz in Figs. 2 and 3 is the instantaneous CPU allo-
cation of jobs. For example, the size of the region with slant-
ing lines (i.e., J1’s allocation) in Fig. 2b should equal the
demand of J1 in Table 1, which is 120 GHz. In the 10th to
20th and 30th to 40th intervals, the cluster has doubled
resources than in other intervals.

Fig. 2a shows the trace of dynamic resource availability.
Figs. 2b, 2c, and 2d show the job execution under three
schedulers, namely First In First Out (FIFO), Fair scheduler,
and an ideal scheduler considering job deadlines. FIFO
schedules jobs based on their arrival times. Job J2 was

delayed until job J1 finished, leading to the miss of J2’s dead-
line. Fair scheduler allocates an equal amount of resource to
each job. However, fairness in resource allocation does not
guarantee that J2 met its deadline. The ideal scheduler knew
the future resource availability and determined that fair allo-
cations between J1 and J2 would lead to J2’s deadline miss
because the resource in the 20th to 30th is not sufficient.
Knowing that more resources would be available in the 30th
to 40th interval, the ideal scheduler prioritized J2 with more
resources from 10th to 30th. The flexible resource allocation
effectively guaranteed the deadlines of both jobs.

We make two observations. First, deadline-oblivious
schedulers perform poorly for jobs with deadlines in a
dynamic cluster. Second, knowledge on future resource
availability is critical to avoiding deadline misses. For exam-
ple, if the resource level in the 20th to 30th interval further
drops, a deadline-aware scheduler should allocate more
resources to J2 in the 10th to 20th interval. In summary,
the information on future resource availability affects a
deadline-aware scheduler’s decisions on individual job
resource allocations.

For this job setting, there exists a schedule that meets
both job’s deadline. For such a schedulable job set, earliest
deadline first scheduling (EDF) can also meet the deadlines.
EDF is optimal on preemptive uniprocessors [14]. However,
EDF has practical issues when used as a Hadoop job sched-
uler. First, in a resource constrained scenario or an over-
loaded system, where not all job deadlines can be met, the
performance of EDF is unpredictable and often quite bad.
Fig. 3a shows the scheduling order of two jobs under EDF.
The system become overloaded as the available resources
dropped at the 10th minute. For this system, EDF is clearly
not optimal because J2 would have meet its deadline if it
was scheduled before J1 (as shown in Fig. 3b). Second, EDF
does not determine how much resource is needed to meet
job deadlines [3]. It may lead to over-provisioning or under-
provisioning of resources. Finally, EDF overwrites user-
defined job priorities making it less attractive in a multi-
user environment.

TABLE 1
Job 1 and 2 Submission Information

Jobs Input Demand Arrival time Deadline

J1 18 GB 120 GHz 0th min 40th min
J2 9 GB 60 GHz 10th min 30th min

Fig. 2. Performance of FIFO Scheduler, Fair Scheduler and an ideal scheduler in a dynamic Hadoop cluster.

Fig. 3. Performance in an overloaded system.
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Summary. We have shown that deadline-aware schedu-
lers have significant advantage over deadline-oblivious
ones. However, obtaining an optimal or near-optimal job
scheduler is not trivial in clusters with dynamically vari-
able resources. We have shown that resource-oblivious
schedulers such as EDF only performs scheduling optimi-
zations based on current observation of resource availabil-
ity. Looking forward into the future resource availability
can guide schedulers in making wise resource allocation
decisions. These findings motivated us to develop a
resource and deadline-aware scheduler for dynamic
Hadoop clusters.

3 RDS DESIGN

In this section, we present the design of RDS, a resource and
deadline-aware Hadoop job scheduler. RDS determines the
resource allocations to individual jobs based on the estima-
tions of job completion time and the predictions on future
resource availability. To realize fine-grained resource con-
trol, RDS divides job execution into control intervals and
builds performance models for estimating job progress,
from which overall job completion time can be inferred.
Based on the job completion time estimation and resource
availability prediction, RDS derives the optimal job schedul-
ing via an online receding horizon control (RHC) algorithm.

Fig. 4 shows the architecture of RDS. We describe the
functionality of each component as follows:

� Fuzzy performance model takes allocated resources and
job size as inputs and generates the estimated job
completion time as outputs. The model is updated
periodically based on the measured job progress at
each control interval.

� Resource predictor takes the history information on
resource availability and predicts the amount of
available resources for the next few intervals.

� Scheduling optimizer adjusts the number of slots allo-
cated to each running job based on an online reced-
ing horizon control algorithm.

We formulate the resource and deadline-aware sched-
uling as an optimization problem that minimizes job
deadline miss penalty. We present detailed design of the
self-adaptive fuzzy model, the resource model and the
scheduling optimizer.

3.1 Problem Formulation

We consider a Hadoop cluster with dynamic resource avail-
ability ra. Consider that there are J jobs running in the sys-
tem and there are a total number of T control intervals. Each
job j has map tasks allocated um

j ðtÞ resource in the tth con-
trol interval (t 2 ½1; . . . ; T �) and reduce tasks allocated ur

jðtÞ
resource in the tth interval. yj is the actual completion time
of job j and yrefj is the reference time that meets its deadline.
The optimization problem is formulated as follows,

min
XJ
j¼1

vj

yj � yrefj

yrefj

 !þ
; (1)

s.t.
XJ
j¼1

ðumj ðtÞ þ ur
jðtÞÞ � ra; t 2 ð1; T Þ: (2)

The goal of RDS scheduler is to minimize the penalty of
deadline misses. Objective Eq. (1) captures the lost revenue
due to the deadline misses. The penalty remains zero until
the job misses its deadline. vj is a constant that represents
the priority of job j. Constraint Eq. (2) ensures that the sum
of resources assigned to all running jobs must be bounded
by the total available resources in the cluster at any time.

However, a job’s completion time yj can only be mea-
sured when the job finishes. It is often too late for the
Hadoop scheduler to intervene if a job already misses its
deadline. To this end, we break down a job’s execution into
small intervals and apply calibrated deadlines for each
interval. Consider a job’s deadline is 100 minutes away and
the execution is divided into 10 intervals. If the job can fin-
ish one tenth of the total work in each interval, it can meet
the overall deadline. The Hadoop scheduler can adjust the
resource allocation if a job’s execution is considered slow
based on its progress on individual intervals. Such a break-
down of job execution also allows the scheduler to look
forward into future intervals and apply optimization con-
sidering future resource availability.

Specifically, we transform the optimization problem to a
receding horizon control (RHC) problem that minimizes the
following objective function:

JðtÞ ¼
XHp

i¼0

XJ
j¼1

k yjðtþ iÞ � yrefj ðtþ iÞ k2W�d

þ
XHc

i¼0

XJ
j¼1

ðk Dum
j ðtþ iÞ k2P þ k Dur

jðtþ iÞ k2QÞ;
(3)

where t is the measurement (or control) interval, yjðtÞ is the
actual progress of the job in interval t and yrefj ðtÞ is the

expected progress that ensures meeting the job’s deadline.

W is the job priority matrix. To count only useful work,

decay function d discounts the data throughput from jobs
with violated SLOs. The optimization looks forward into

future Hp intervals and tries to derive the optimal resource

allocation considering future resource availability. Dum
j ðtÞ

and Dur
jðtÞ are the resource adjustment for map and reduce

tasks in order to meet the expected job progress in each
interval, respectively. They together represent the control

penalty and are weighted by penalty matrices P and Q. The

first part of the function serves as a penalty for not meeting

Fig. 4. The architecture of RDS.
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a job’s progress target and the second part requires the cost
for changing job’s resource allocations be minimized.

We use a SLO with two time bounds, thard and tsoft, in the
decay function. While thard sets a hard deadline for job com-
pletion, beyond which no revenue is generated, tsoft is a soft
deadline whose violation will incur reduction in revenue.
We ensure that hard deadlines to be no longer than 2 times
of the soft deadlines so that the decay function never
becomes negative. Accordingly, d considers the data deliv-
ered as useful work if the observed job finish time yj meets
tsoft. Violations of tsoft and thard result in a linear decay in
the counted throughput and zero work, respectively.

d ¼
1 if yj < tsoft:

1� yj�tsoft
tsoft

if tsoft � yj � thard:

0 if yj > thard:

8<
: (4)

To consider future resource availability, the RHC control-
ler predicts a job’s performance for the nextHp control inter-
vals. It then computes a sequence of control actions DuðtÞ,
Duðtþ 1Þ; . . . ;DuðtþHcÞ over Hc control periods, called the
control horizon, to keep the predicted performance close to
their expected targets. Thus, a performance model is needed
to predict the progress of a job in a control interval given a
certain amount of resources. The total amount of resources
available in future intervals needs to be predicted.

3.2 Estimating Job Execution Progress

We use a multiple-input-single-output fuzzy model to pre-
dict a job’s execution progress based on its input size and
resource allocation in each control interval. The fuzzy model
is often used to capture the complex relationship between
resource allocations and a job’s fine-grained execution prog-
ress [15]. However, a job’s progress can be affected by many
factors. First, job progress is not uniform at different execu-
tion phases, e.g., map and reduce phases. Second, even
within the same phase, data skew among tasks leads to dif-
ferent task execution speed at different intervals. Finally, co-
running jobs may unpredictably interfere with a job’s execu-
tion, making the mapping of resource to job progress vari-
able. Therefore, we design an online self-adaptive fuzzy
model based on real-timemeasurements of job progress.

3.2.1 Fuzzy Model

The job j execution progress in the control interval t is rep-
resented as the input-output NARX type (Nonlinear Auto
Regressive model with eXogenous inputs),

yjðtÞ ¼ RjðuðtÞ; dj; �ðtÞÞ: (5)

R is the relationship between the input variables and the
output variable. The input variables are the current resource
allocation uðtÞ, the job input size dj, and the regression vec-
tor �ðtÞ. Here, resource allocation, uðtÞ ¼ ½umðtÞ; urðtÞ�,
includes both map resource allocation umðtÞ and reduce
resource allocation urðtÞ. The regression vector �ðtÞ contains
a number of lagged outputs and inputs of the previous con-
trol periods. It is represented as

�ðtÞ ¼ ½ðyðt� 1Þ; yðt� 2Þ; . . . ; yðt� nyÞÞ;
ðuðtÞ; uðt� 1Þ; . . . ; uðt� nuÞÞ�T ;

(6)

where ny and nu are the number of lagged values for out-
puts and inputs, respectively. Let r denote the number of
elements in the regression vector �ðtÞ, that is,

r ¼ ny þ nu: (7)

R is the rule-based fuzzy model that consists of Takagi-
Sugeno rules [16]. A rule Rj is represented as

Rj : IF �1ðtÞ is Vj;1; �2ðtÞ is Vj;2; . . . ; and �rðtÞ is Vj;r

uðtÞ is Vj;rþ1 and dj is Vj;rþ2

THEN yjðtÞ ¼ zj�ðtÞ þ hjuðtÞ þ vjdj þ uj:

(8)

Here, Vj is the antecedent fuzzy set of the jth rule, which is
composed of a series of subsets: Vj;1;Vj;2; . . . ;Vj;rþ2. zj, hj
and vj are parameters, and uj is the offset. Their values are
obtained by offline training. Each fuzzy rule characterizes
the nonlinear relationship between allocated resources and
performance for a specific job type.

3.2.2 Online Self-Learning

Due to the dynamics of MapReduce job behaviors (e.g., data
skews, different phases and multi-tenant interferences), we
design an online self-learning module to adapt the fuzzy
model. It aims to minimize the prediction error of the fuzzy
model eðtÞ, which is the error between actual measured job
progress and predicted value.

If eðtÞ 6¼ 0, we apply a recursive least squares (RLS)
method [17] to adapt the parameters of the current fuzzy rule.
The technique updates the model parameters as new meas-
urements are sampled from the runtime system. It applies
exponentially decaying weights on the sampled data so that
higherweights are assigned tomore recent observations.

We express the fuzzy model output in Eq. (5) as follow:

yðtÞ ¼ fðtÞX þ eðtÞ; (9)

where eðtÞ is the error between the actual output and pre-
dicted output. fðtÞ ¼ ½fT

1 ;f
T
2 ; ::; f

T
r � is a vector composed

of the model parameters. X ¼ ½s1XðtÞ; s2XðtÞ; ::; srXðtÞ�
where sj is the normalized degree of fulfillment or firing
strength of jth rule and XðtÞ ¼ ½�ðtÞT ; uðtÞ� is a vector con-
taining the previous outputs and inputs of the control sys-
tem. The parameter vector fðtÞ is estimated so that the error
function in Eq. (10) is minimized. We apply both the current
error eðtÞ and the previous error eðt� 1Þ to estimate the
parameter vector,

Error ¼
Xt
t�1

ðeðtÞ2 þ teðt� 1Þ2Þ: (10)

Where t is called the discount factor as it gives higher
weights on more recent samples in the optimization. It
determines in what manner the current prediction error and
old errors affect the update of parameter estimation.

3.3 Stability and Convergence

We demonstrate that the above RHC achieves closed-loop
stability and the closed loop system under the above RHC
control is asymptotically stable. Moreover, the solution of
function 3 satisfies yt 2 xN , ut 2 L, limt!1 yt ¼ yreft and
limt!1 Dut ¼ 0, where xN and L are the range of yt and ut.
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For the stabilization problem, without loss of generality,
it is assumed that the origin (y ¼ 0 and Du ¼ 0) is the steady
state that should be stabilized. Also the prediction horizon
is set equal to the control horizon, Hp ¼ Hc ¼ N . Then the
cost function 3 is transferred to:

JNðy; uÞ ¼ S
N
t¼0lðyt;DutÞ þ F ðyNÞ; (11)

where the predicted states yt are defined by Equation (5).
Moreover, lðyt;DutÞ is a continuous function and F ðyNÞ is a
local stabilizing control law, an associated Lyapunov func-
tion Ff . We define JNðy; uÞ has a solution y 2 Y , which
yields an optimal control sequence Du�ðyÞ ¼ ½Du�

0ðyÞ;
Du�1ðyÞ; . . . ;Du�

NðyÞ�, an optimal trajectory ½y�0ðyÞ; y�1ðyÞ; . . . ;
y�NðyÞ; �, the optimal valueVNðyÞ ¼ JNðy;Du�ðyÞÞ.More specif-

ically, there exist kf : x ! RJ ; Ff : x ! R; Cf > 0 such that

Ff is continuous with FfðyÞ � 0forally 2 x;

0 2 xf :¼ fy 2 xjFfðyÞ � Cfg;
kfðyÞ 2 L

FfðRðy; kfðyÞÞÞ � FfðyÞ � �lðy; kfðyÞÞ;

(12)

Based on the definition of optimal trajectory, we have,

F ðy�Nðyðtþ 1ÞÞÞ � F ðy�N�1ðyðtþ 1ÞÞÞ
þ lðy�N�1ðyðtþ 1Þ;Du�

N�1ðyðtþ 1ÞÞ � lðyðtÞ;DuðtÞÞ
�F ðRðy�NðyðtÞÞÞ; kfðy�NðyðtÞÞÞ � F ðy�NðyðtÞÞÞ
þ lðy�ðyðtÞÞ; kfðy�NðyðtÞÞÞ � lðyðtÞ;DuðtÞÞ:

(13)

If y�NðyðtÞÞÞ 2 xf , then the equation implies

F ðy�Nðyðtþ 1ÞÞ � F ðy�N�1ðyðtþ 1ÞÞ
þ lðy�N�1ðyðtþ 1Þ;Du�

N�1ðyðtþ 1ÞÞ � 0:
(14)

The prior studies have shown that the set xN is invariant
under the RHC law. Given above all, we have

VNðyðtþ 1ÞÞ � VNðyðtÞÞ
� � lðyðtÞ;DuðtÞÞ þ lðy�NðyðtÞÞ; kfðy�NðyðtÞÞÞ
þ F ðRðy�NyðtÞÞ; kfðy�NðyðtÞÞÞ � F ðy�NyðtÞÞ

� � lðyðtÞ;DuðtÞÞ:

(15)

It is illustrated that the value function is strictly decreas-
ing so that VN can serve as a Lyapunov function, proving
stability and convergence.

4 PREDICTING RESOURCE AVAILABILITY

4.1 ARIMA Model Based Prediction

We use a simple but effective Auto-Regressive Integrated
Moving Average (ARIMA) model [18] to predict the
resource availability in future intervals based on history
information. The ARIMA model has been used to predict
resource consumption [19], and dynamic power supply [1].

In ARIMA model, the available resource of the current
interval raðtÞ is predicted based on the last n observations of
resource availability, i.e., raðt� 1Þ, ... raðt� nþ 1Þ.

raðtÞ ¼ a1raðt� 1Þ þ a2raðt� 2Þ þ � � � þ anraðt� nÞ; (16)

where a1; a2; . . . ; an are coefficients obtained via model fit-
ting. RDS predicts future resource availability over a time
window h 2 Nþ. Let raðtþ hjtÞ denote the hth step predic-
tion of raðtÞ knowing the last n observations, i.e., ra
ðt� nÞ; . . . ; raðt� 1Þ. The available resource series raðtjtÞ;
raðtþ 1jtÞ; . . . ; raðtþ hjtÞ are obtained by iterating the one-
step prediction. Table 2 illustrates how one-step prediction
is iterated to obtain a 3-step prediction. We study the impact
of different prediction horizons in Section 6.

4.2 Green Power Based Prediction

In contrast to brown energy, solar and wind energy genera-
tion may not provide a reliable, consistent source of energy
due to the time-varying weather conditions. We use predic-
tion methods to estimate the amount of green energy in a
given interval and utilize that data to make decisions of
workload placement and resource provisioning in distrib-
uted datacenters.

We use the model introduced by the work in [20] to pre-
dict solar and wind power. The solar model is based on the
simple premise that energy generation is inversely related
to the amount of cloud coverage. It is expressed as:
PsolarðkÞ ¼ BsolarðkÞð1� CloudCoverÞ, where PsolarðkÞ is the
amount of solar power predicted for interval k, BsolarðkÞ is
the amount of solar power expected under ideal sunny con-
ditions, and CloudCover is the forecasted percentage cloud
cover (given as a fraction between 0 and 1). We use histori-
cal data from NREL [21] to instantiate Bsolar.

The wind power model is based on the cubic wind power
production function [20]. That is, PwindðkÞ ¼ a	 ðvwðkÞÞ3 þ b,
where vw is the windspeed, a and b are parameters depend-
ing on the locations. We fit this power curve with the
observed data from NREL [21] using the least-squares
method to generate the wind powermodel. The parameters a
and b used in our implementation are obtained empirically.

Given the data from NREL [21], we implement solar
and wind energy prediction models at the granularity of
10 minutes. We assume that each sustainable datacenter has
7 solar panels and amicro-turbinewith capability of producing
1KW respectively. Fig. 5 demonstrates that the average differ-
ence between each observed andpredicted value is small.

In this work, we focus on the CPU resource allocation
since CPU is the major power contributor in datacenters [6],
[10], [22]. There is a linear relationship between the avail-
able CPU resource and the power consumption [22], [23].
Thus, the power constraint in the optimization problem is
transformed to the resource availability constraint.

4.3 Scheduling Optimizer

The scheduling optimizer is invoked at each control inter-
val. It solves the RHC control problem using quadratic pro-
gramming and outputs a sequence of resource adjustments
that minimize fine-grained job deadline misses at each

TABLE 2
3-step Prediction of ARIMA Model

Steps Inputs of ARIMA Output

1 raðt� 3jtÞ; raðt� 2jtÞ; raðt� 1jtÞ raðtjtÞ
2 raðt� 2jtÞ; raðt� 1jtÞ; raðtjtÞ raðtþ 1jtÞ
3 raðt� 1jtÞ; raðtjtÞ; raðtþ 1jtÞ raðtþ 2jtÞ
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interval. Then, RDS applies the resource adjustment to indi-
vidual jobs via a two-level scheduling.

Job Management. RDS maintains two separate queues for
current running jobs and waiting jobs. By default, incoming
jobs enter the waiting queue. The scheduling optimizer
determines which job is to be moved to the running queue
based on the solution of the RHC control problem. For exam-
ple, low priority jobs or jobs with distant deadlines may not
be immediately allocated resources by the RHC control
algorithm, i.e., ujðtÞ ¼ 0. These jobs wait until they receive
resource allocation from the scheduling optimizer. Since the
resource allocation is determined once for every control
interval, it is possible that short jobswhose deadline is earlier
than the next control intervalmaymiss their deadlines due to
the late allocation of resources. To this end, we provide a fast
path for short jobs in the job queuemanagement, that is, RDS
immediatelymoves a short job to the running queue.

Task Scheduling. RDS applies the resource adjustment to
individual jobs by changing the number of execution slots
assigned to each job. Assigning more homogeneous slots to
a job leads to more resources allocated to the job. Although
the actual resources allocated with different slots may vary,
we found that the total number of slots assigned to a job is a
good approximation of the job’s allocated resources. RDS
uses a minimally invasive approach to realize dynamic
number of slots assigned to each job. Algorithm 1 shows
how dynamic slots are realized via task scheduling. First,
jobs are sorted according to their resource adjustment in
the next control interval. At each heartbeat, the job with the
largest resource adjustment (line 5) is selected to run
its task. After assigning one slot to this job, the job’s resource
adjustment is updated by subtracting the amount of resource
equivalent to the size of one slot rslot (line 9).We calculate rslot
based on the total available resource ra and the total number
of slots in the cluster. We discuss two scenarios in Section 6,
where rslot is treated differently.

Algorithm 1. Task Scheduling with Dynamic Slots

1: Update the running job queue
2: repeat
3: if Any slot is available then

4: /*Select a job in the running job queue*/
5: j ¼ argmax

j
½DujðtÞ�; j 2 f1; . . . ; Jg

6: Select a local task from the job j
7: Assign selected task to the available slot
8: /*Update control adjustment scheme*/
9: DujðtÞ ¼ DujðtÞ � rslot
10: end if

11: until
PJ

j¼1ðum
j ðtÞ þ urjðtÞÞ ¼ ra

The algorithm effectively changes the number of slots of
each job. If DujðtÞ > 0, the job eventually will be assigned
free slots. If DujðtÞ < 0, the job actually gives up the oppor-
tunity to run tasks, which is equivalent to reducing its num-
ber of allocated slots.

5 SYSTEM IMPLEMENTATION

5.1 Testbed

We built a dynamic Hadoop cluster in our university cloud,
which consists of 108-core CPUs and 704 GB memory.
VMware vSphere 5.1 was used for server virtualization.
VMware vSphere module controls the CPU usage limits in
MHz allocated to the virtual machines (VMs). It also pro-
vides an API to support the remote management of VMs.
Hadoop version 1.2.1 was deployed to the cluster with
21 VMs, i.e., one master node and 20 slave nodes. We con-
figured each slave node with two map slots and one reduce
slot. The block size is configured 64 MB in our experiments.
Each VM was allocated 1 virtual CPU and 2 GB memory.
All VMs ran Ubuntu Server 10.04 with Linux kernel 2.6.32.

5.2 RDS Implementation

To implement RDS in the Hadoop environment, we added a
new member mapred.job.deadline to store the dead-
line of a job to the class JobConf. We applied the idea of
Hadoop capacity scheduler and refactoried its QueueMan-

ager class to implement RDS waiting and running job
queues. We implemented the core components of RDS in
the class SchedulerTaskScheduling.

Resource Predictor. We used a sensor program provided
by VMware vSphere 5.1 to collect the resource availability
of individual VMs. The cluster information, e.g., number of
slots, was monitored by the function getClusterStatus

in the JobTracker. We applied the ARIMA approach com-
bined with the collected resource information of last 3 hori-
zons to obtain the predicted resource in the next 3 intervals.

Performance Modeling. We used MATLAB Fuzzy Logic
Toolbox to apply subtractive clustering andANFISmodeling
technique on the data collected from cluster. At runtime, the
performance models were updated based on new measure-
ments collected from the JobTracker using RLS algorithm.

Receding Horizon Control. The RHC controller module
invoked a quadratic programming solver, quadprog, in
MATLAB to compute the local control solution. We used
MATLAB Builder JA to create a Java class from the MAT-
LAB program calling quadprog. This Java class was inte-
grated into RDS and deployed in the master node of the
cluster. Based on the observations, we empirically set the
control penalty weight matrix P ¼ ½0:0107; 0:0096; 0:0132�
and Q ¼ ½0:0173; 0:0168; 0:0194� for map and reduce task,
respectively. We conducted a set of experiments consisting
various workloads to measure the activation overhead of
RDS under different job types. We then use the measured
overhead in the control function and empirically set the con-
trol penalty weight matrix by MATLAB. The control inter-
val is set to 10 minutes.

5.3 Workloads

For performance evaluations, we used a set of representa-
tive MapReduce applications from the PUMA benchmark

Fig. 5. The accuracy of green power prediction.

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:41:24 UTC from IEEE Xplore.  Restrictions apply. 



[13], i.e.,Wordcount, Terasort and Grep. By default, we set the
same priority for each benchmark. We study the impact of
different job priorities in our preliminary study [11]. For
each application, we submit multiple copies with different
input sizes as shown in the Table 3 that contains jobs with
widely varying execution times and data set sizes, emulating
a scenario where the cluster is used to run many different
types of MapReduce applications. Similarly as Natjam
et al. [4], we set the expected execution time of individual
jobs to 2.5 times of the job completion time in dedicated clus-
ter with sufficient resources. Then, we derived jobs’ dead-
lines according to their arrival times. According to the
study [24], we set inter-arrival time of jobs to 10minutes.

5.4 Dynamic Resource Trace

Multiple factors can cause dynamic resources in a Hadoop
cluster. Here, we consider a Hadoop cluster running partially
on renewable energy. We assume that the cluster is powered
by half traditional energy and half green energy. Since the
supply of renewable energy depends on weather condi-
tions, the available resource to the cluster varies over
time. We use the renewable power trace from National
Renewable Energy Laboratory [21] and derive the traces
for resource availability using the power model proposed
by [19]. Figs. 6a and 6b show the power trace and the
derived resource trace, respectively. We scaled down the
resource trace to match the cluster settings and replayed
the trace by dynamically limiting the available resources
in the cluster. We used vSphere API to change CPU
resource allocation on individual VMs according to the
cluster resource trace.

6 EVALUATION

In this section, we evaluate RDS performance using various
representative Hadoop benchmarks and dynamic resource
traces. We first study the effectiveness of RDS in minimizing
deadline miss penalty and reducing job completion time.
Then, we evaluate the impact of hard/soft deadlines,the
accuracy of the fuzzy modeling and the effectiveness of the
RHC control. Finally, we study the impact of different
resource prediction approaches, the parameter sensitivity
and the overhead of RDS.

We study two methods for organizing cluster resources
when the total available resource varies.

� Scale-up: The number of nodes in the cluster is fixed
while the capacity of individual nodes is changed in
proportion to the change of total resource. In this sce-
nario, rslot changes with cluster capacity.

� Scale-out: The capacity of individual nodes is fixed
while the number of nodes varies as the total
resource changes. In this scenario, rslot is also fixed.

We compare RDS with Hadoop Fair Scheduler. We also
implement the Earliest Deadline First Scheduling (EDF) in
scale-up and scale-out scenarios. Fair Scheduler allocates a
fair number of slots to jobs sharing the cluster. EDF always
runs the job that has the earliest deadline first requirement
and gives the job asmany slots as it needs.We implement two
versions of EDF: non-preemptive (EDF-N) and preemptive
(EDF-P). EDF-N enforces the EDF policy at the job queue –
there is always only one job, the job with the earliest deadline,
in the running queue. Even if a job with an earlier deadline
arrives, it needs to wait for the running job’s completion.
EDF-P allows multiple jobs in the running queue. A job can
preempt a running job’s slots. However, EDF-P does not kill
the running tasks of the preempted job but waits for their
completion. The preempted jobwill not be assigned any slots.

6.1 Effectiveness of RDS

Minimizing Deadline Miss Penalty. Fig. 7 compares the dead-
line miss penalty for jobs J1-J9 (listed in Table 3) incurred by
Fair Scheduler, EDF-N, EDF-P and RDS. Note that the dead-
line penalty is zero if the deadline is met, and it increases
linearly with the completion time. Fig. 7a shows that RDS
incurred 10, 15 and 36 percent less penalty compared with
EDF-N, EDF-P and Fair Scheduler in the scale-up scenario,
respectively. In the scale-out scenario, RDS reduced the
deadline miss penalty 12, 17 and 43 percent compared with
EDF-N, EDF-P and Fair Scheduler, respectively.

Figs. 7a and 7b quantify the deadline misses for individ-
ual jobs.We can see that Fair scheduler incurredmost signifi-
cant misses due to its obliviousness of job deadlines. EDF-N
and EDF-P effectively reduced the extent of deadline misses
and met some jobs’ deadlines such as J1 and J2. RDS further
reduced the miss penalty. Note that RDS did not outperform
both EDF-N and EDF-P in all cases. For example, EDF-Nwas
the optimal policy for J1, which was the first job submitted.
Overall, RDS achieved consistently better performance than
either EDF-N or EDF-P. This is due to its capability to opti-
mize job scheduling considering future resource availability
in the predictionwindow. Such resource-aware optimization
is critical in overloaded clusters.

Reducing Job Completion Time. Fig. 8 compares the job
completion time achieved by Fair Scheduler, EDF-N, EDF-P
and RDS. Fig. 8a shows that RDS improved the average job

TABLE 3
Various Workload Characteristics

Category Label Input size (GB) Input data # Maps # Reduces Deadline (min)

Wordcount J1/J2/J3 60/35/15 Wikipedia 960/560/250 200/ 100/ 50 80/ 50/ 25
Grep J4/J5/J6 80/40/20 Wikipedia 1280/640/320 200/ 100/ 50 80/ 50/ 25
Terasort J7/J8/J9 50/25/12 TeraGen 800/450/192 200/ 100/ 50 80/ 50/ 25

Fig. 6. A dynamic Hadoop cluster.
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completion time by 5, 9 and 19 percent compared with EDF-
P, EDF-N and Fair Scheduler, respectively. In particular,
Figs. 8b and 8c show that RDS significantly reduced the
completion time of small jobs, e.g., J3, J6 and J9. Relatively,
RDS was less effective for large job’s, e.g., J1, J4 and J7. This
is due to the fact that large jobs usually have long deadlines
and the misses will not immediate lead to large penalties.
Thus, such jobs are not favored by the optimization. Fig. 8a
also reveals that the average job completion time of the
scale-out scenario was 7 percent longer than that of the
scale-up scenario. This is due to the larger operation over-
head when adding or removing Hadoop nodes. Job data
needs to be balanced across remaining nodes, which inevi-
tably incurs overhead. More detailed results about the
dynamic resource allocations when running J1-J9 can be
found in our preliminary study [11].

6.2 Impact of Hard and Soft Time Bounds

Fig. 9 shows that the effectiveness of RDS while setting hard
and soft time bounds as deadlines in the experiment. The
results demonstrate that hard deadline misses are much less
than soft deadlinemisses for all workloads. This is due to the
fact that the violating hard time bounds leads much higher
penalty (as shown in the decay function d) compared to vio-
lating of soft time bounds. The results in Figs 9a and 9b show
that scale-out approach for Wordcount and Grep achieves
slightly higher deadline misses than scale-up approach. In
contrast, Fig. 9c shows that scale-up approach for Terasort

leads higher deadline misses. The reason is that Terasort is
I/O intensive workload, which can benefit from the scale-
out deploy model. Furthermore, we use SQL query applica-
tions by Hive on Hadoop to query the E-commerce data set
which records orders and order-product information for an
E-commerce website [25]. Fig. 9d demonstrates that RDS
scheduler is effective to reduce the deadline misses when
running time sensitive Hive workloads on dynamic Hadoop
clusters. It shows that scale-out approach for Hive leads
higher deadline misses than scale-up does. The result also
shows that Hive’s soft deadline misses are much lower than
these traditional MapReduce workloads (Wordcount, Grep
and Terasort). This is due to the fact that Hive workloads are
more time sensitive andmore flexible to obtain the resource.

RDS provides a fast path for small jobs with deadlines
earlier than the next control interval. We evaluate the effec-
tiveness of this mechanism when handling small jobs. In
our preliminary study [11], we compared the performance
of RDS with/without the fast path. The result shows that
RDS with fast path significantly reduced small jobs’ dead-
line misses. Without the fast path, deadline misses reduced
as the job size increased. Our preliminary result demon-
strates that the job completion time achieved by the fast
path RDS was 50 percent less.

6.3 Accuracy of the Modeling

To evaluate the accuracy of the fuzzy models, we compare
the error between the predicted job completion times and

Fig. 7. The job deadline misses due to dynamic resources by Fair Scheduler, EDF and RDS.

Fig. 8. The job completion time due to dynamic resources allocated by Fair Scheduler, EDF and RDS.

Fig. 9. The hard and soft time bounds impact by Wordcount, Grep, Terasort and Hive respectively.
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the actual completion times. The accuracy ismeasured by the
normalized root mean square error (NRMSE), a standard
metric for deviation [15]. Fig. 10a shows that the prediction
was quite accurate, with on average 9.6 percent NRMSE. To
study how the prediction error affect the working of RHC,
we injected errors into the prediction. Fig. 10b shows that the
deadline misses increased from 10.5 to 33 percent as the pre-
diction error increased from 10 to 35 percent.

Figs. 10c and 10d plot the error of resource prediction and
its impact on the deadline misses. Fig. 10c shows that the
NRMSE of resource prediction varied with different predic-
tion horizons. It suggests that a prediction horizon of 3 steps
give theminimum error. Fig. 10d shows that deadlinemisses
increased significantly as the resource prediction error
increases. This observation again confirms that resource-
aware scheduling is critical to avoiding deadlinemisses.

6.4 Impact by Prediction Approaches

Fig. 11a compares the effectiveness of two different avail-
able resource prediction approaches, i.e., ARIMA and green
power based prediction. The result shows that green power
based prediction achieves better effect (less deadline viola-
tions) in our experiment. This is because our resource avail-
ability trace is generated based on the renewable power
trace from National Renewable Energy Laboratory [21]. tera-
sort workload with green power based prediction reduces
6 percent of deadline violation, which means the SLO of
I/O intensive workload relies more on the accuracy of the
dynamic cluster resource prediction. For other scenarios,
ARIMA may achieve better performance. For example, we
evaluate the accuracy of ARIMA approach by the normal-
ized root mean square error (NRMSE) based on Google’s
cluster trace. Fig. 11b shows the NRMSE is between 9.5 and
13 percent in a three-day scenario. It demonstrates ARIMA
can achieve the similar accuracy with the green power pre-
diction approach. Previously Fig. 11a shows green power
prediction is better, but given the results in Fig. 11b, this
conclusion is not true for Googles trace. Thus, ARIMA is
applicable and effective for predicting the available resour-
ces of those regular dynamic clusters.

6.5 Overhead and Scalability

The overhead of RDS comes from two sources: (1) the
time required to activate control adjustment according to
Algorithm 1; (2) the time required to perform scheduling
optimizer in each control interval. We first measured the
activation overhead of RDS under different job types. It
took on average of 5.2 seconds to activate a map task adjust-
ment and 10.6 seconds for a reduce task. Table 4 shows the
costs to activate the control adjustment for wordcount, grep
and terasort, respectively. Recall that the overhead caused by
control adjustment is considered as control penalty and is
weighted by penalty matrixes P and Q in the scheduling
optimizer, respectively. Fig. 13 shows that the overhead costs
for map and reduce tasks of wordcount application with dif-
ferent configurations. It demonstrates that larger task size
leads to higher control overheads for both map and reduce
tasks. The results also demonstrate that individual tasks exe-
cution time depends on the two factors, i.e., block size and
the number of reduce task. For map task, the block size usu-
ally determines the average task execution time. The longer
average task execution time leads larger overhead when
RDS adjusts the map slot allocation. This is due to the fact
RDS do not preempt any slots have been assigned to jobs.
For large tasks, RDS will wait more time until the occupied
slot released.We also found that the scheduling optimization
algorithm took approximately 1.2 seconds to complete. This
overhead is negligible compared to the control interval of
10 minutes. We have further conducted an experiment to
evaluate the scalability of RDS scheduler. We scaled out the
cluster resource from 20 vCPUs to 320 vCPUs in our testbed.
Fig. 12 shows that the overhead becomes stable with the
increasing number of tasks, and it scales from 8.3s (40 tasks/
20 vCPUs) to 14.1s (640 tasks/320 vCPUs) in the experiment.
For a very large cluster, multiple factors could become the
bottlenecks and a further study is needed.

6.6 Discussions

Job Progress Estimation. We currently assume a uniform
deadline on job progress for each control interval, i.e.,
10 minutes. The per-interval deadline is calculated as the
ratio of the overall deadline and the number of control inter-
vals. Since the job progress is not uniform due to different
execution phases (i.e., map and reduce phases) or data skew

Fig. 10. The prediction accuracy and error impact of RHC control.

Fig. 11. The impact by prediction approaches.

TABLE 4
The Control Adjustment Overheads

Tasks Wordcount Grep Terasort Average

Map 5.3s 3.6s 7.2s 5.2s
Reduce 9.3s 7.8s 12.5s 10.6s
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among tasks, assuming uniform per-interval deadlines pos-
sibly leaves room for improvement. For example, because
the map phase usually executes faster the reduce phase, the
uniform per-interval deadline may slow down the map
phase with a low expectation. We plan to set different dead-
lines for the map and reduce phases and investigate how
this change will affect job completion times.

Running Task Preemption. Another extension of our cur-
rent work is to explore how preemption of current running
tasks will affect deadline-aware Hadoop scheduling. Fig. 14
shows that the benefit from RDS scheduler deteriorates sig-
nificantly as the size of individual tasks expending. Our
experimental result reveals that RDS scheduler works well
when the average task completion time is smaller than
three minutes. But the performance of proposed scheduler
decreases while the task size continuously grows. Thus,
task preemption and killing strategy is recommended in
such scenarios. Existing work has shown that killing or pre-
empting a running task can possibly offer significant bene-
fits but inevitably cause work loss for killed tasks [4], [26].
To kill or not to kill a running task becomes an even harder
decision with variable resources.

Parameters Sensitivity. Settings of the prediction (i.e., Hp)
and control horizon (Hc) may affect the RHC control algo-
rithm. We change their values and plot their effect on job
deadline misses. The results show that deadline misses ini-
tially drop asHP andHc increase. However, further increas-
ing both parameters leads to worse deadline misses. Thus,
we empirically set Hp ¼ Hc ¼ 3 in all experiments. More
results about the impact by control horizon setting and the
different deadline misses as the workload priority varies
can be found in our preliminary version of this paper [11].

Task Data Locality. Our current RDS scheduler has not
considered the data locality issues when estimating indi-
vidual tasks performance and scheduling Hadoop jobs.
Existing studies have shown that there is inherent load
imbalance among MapReduce tasks, skew that could come
from uneven data distribution or non-uniform data process-
ing cost creates stragglers [27], [28]. We will further explore

how to optimize task scheduling in dynamic environment
while maximizing data locality across working sets, in an
attempt to reduce network bottlenecks and increase overall
system performance.

7 RELATED WORK

Recently there are many existing studies have shown that
MapReduce cluster size usually fluctuates for many reasons
in a real system. Sharma et al. described MapReduce work-
load typically shared physical resources with other work-
loads, e.g., interactive workload [7]. Thus, the actual
amount of resources available for MapReduce applications
can vary over time. Lang et al. proposed AIS [29], an alter-
native energy management framework to reduce the energy
consumption of a MapReduce cluster and lead the cluster
size to be time varying. Polo et al. [5] presented RAS, a
resource aware adaptive scheduler for MapReduce. It aims
to improve resource utilization across machines while
considering completion time goals. However, the dynamic
resource availability and the reconfiguration cost of job
scheduling are not considered. Furthermore, our work dif-
fers from theirs in that we take advantage of cluster
resource prediction to minimize job deadline misses and we
also provide job priority support.

As the environmental concerns and the energy consump-
tion of datacenters continuously grow, developing green
datacenters is becoming an increasingly important mission
for major Internet service operators [22], [23]. These studies
aim to achieve sustainable operation driven by green energy
supply partially or completely from following aspects: (1)
Studies [6], [22] focus on the energy demand side of a data-
center. (2) Studies [30], [31] focus on matching energy sup-
ply of a datacenter server cluster with its energy demand.
(3) Studies [32], [33] focus on different energy storage
approaches in the sustainable datacenters to improve their
green energy usage efficiency. However, majority of the pre-
vious studies on the green energy management has focused
on the whole datacenter rather than the specific big data
application. Goiri et al. proposed GreenHadoop [6], a Map-
Reduce framework for a datacenter powered by solar
energy and using electrical grid as a backup. GreenHadoop
dynamically adjusts the available cluster resources to maxi-
mize the green energy consumption by job scheduling.

Indeed, there are various techniques, e.g., resource provi-
sioning [3], job scheduling [34] and self-tuning configuration

Fig. 12. Scalability of RDS scheduler.

Fig. 13. The relationship between overhead cost and various
configurations.

Fig. 14. RDS improvement and task sizes.
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[35], which aim to optimize MapReduce performance.
Dittrich et al. proposed Hadoop++ [36], a new index and
join technique to improve runtime of MapReduce jobs.
Rao et al. proposed a new MapReduce framework, Sail-
fish [27], to improve performance by aggregating interme-
diate data. Jinda et al. [37] proposed a new data layout,
coined Trojan Layout, that internally organizes data blocks
into attribute groups in order to improve data access
times. None of these existing approaches consider to opti-
mize MapReduce performance by dynamic job scheduling
in the multi-user environment.

Many existing scheduling techniques [4], [24] have dem-
onstrated by prior studies that they can significantly improve
MapReduce performance. The default FIFO Scheduler in
Hadoop implementation may not work well since a long job
can exclusively take the computing resource on the cluster,
and cause large delays for other jobs. This is the reason that
many schedulers, e.g., Capacity Scheduler, Fair Scheduler,
can share resources among multiple jobs. However, all these
schedulers do not support different user level performance
goals and are not dynamically adapted based on job prog-
ress. Recently, a few studies [3], [4] start to optimize the
performance of MapReduce jobs with respect to their perfor-
mance goals. Wolf et al. described FLEX [24], a flexible and
intelligent allocation scheme for MapReduce workloads. It is
proposed as an add-on module that worked synergistically
with Fair Scheduler to provide performance guarantees. Our
work differs from these efforts in that we consider a Hadoop
cluster with fluctuating resource availability.

8 CONCLUSION

In this paper, we find there is a growing need for providing
predictable services to users who have requirements on job
completion times. While earliest deadline first scheduling
(EDF) like algorithms are popular in guaranteeing job dead-
lines in real-time systems, they are not effective in a Hadoop
environment, especially a Hadoop cluster with dynamic
resources. We further find that deadline misses in Hadoop
workloads can be minimized by exploiting the dynamics in
resource availability and the flexibility in Hadoop task
scheduling. We propose, RDS, a resource and deadline-
aware Hadoop job scheduler that allocates resources to jobs
according to resource prediction and job completion time
estimation. RDS uses an efficient online receding horizon
control algorithm to possibly derive the optimal resource
allocations to jobs. Experimental results show that RDS
effectively reduces job deadline misses by at least 36 and
10 percent compared to Fair scheduler and the EDF sched-
uler, respectively. In a Hadoop cluster running partially on
renewable energy, the experimental result shows the green
power based resource prediction approach can further
reduce the penalty of deadline misses by 16 percent com-
pared to ARIMA prediction approach.
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