
Heterogeneity-aware Workload Placement and
Migration in Distributed Sustainable Datacenters

Dazhao Cheng*, Changjun Jiang† and Xiaobo Zhou*

*Department of Computer Science, University of Colorado, Colorado Springs, USA
†Department of Computer Science & Technology, Tongji University, Shanghai, China

Email addresses: dcheng@uccs.edu, cjjiang@tongji.edu.cn, xzhou@uccs.edu

Abstract—While major cloud service operators have taken
various initiatives to operate their sustainable datacenters with
green energy, it is challenging to effectively utilize the green en-
ergy since its generation depends on dynamic natural conditions.
Fortunately, the geographical distribution of datacenters provides
an opportunity for optimizing the system performance by dis-
tributing cloud workloads. In this paper, we propose a holistic
heterogeneity-aware cloud workload placement and migration
approach, sCloud, that aims to maximize the system goodput
in distributed self-sustainable datacenters. sCloud adaptively
places the transactional workload to distributed datacenters,
allocates the available resource to heterogeneous workloads in
each datacenter, and migrates batch jobs across datacenters,
while taking into account the green power availability and
QoS requirements. We formulate the transactional workload
placement as a constrained optimization problem that can be
solved by nonlinear programming. Then, we propose a batch
job migration algorithm to further improve the system goodput
when the green power supply varies widely at different locations.
We have implemented sCloud in a university cloud testbed with
real-world weather conditions and workload traces. Experimental
results demonstrate sCloud can achieve near-to-optimal system
performance while being resilient to dynamic power availability.
It outperforms a heterogeneity-oblivious approach by 26% in
improving system goodput and 29% in reducing QoS violations.

I. INTRODUCTION

Today, major cloud service operators have taken various
initiatives to operate their datacenters with renewable energy
partially or completely [1]. Google, Facebook, and Apple
have started to build their own green power plants to support
the operation of their datacenters. Researchers envision that
in the near future datacenters, at least micro-clouds, can
be completely powered by renewable energy and be self-
sustainable [17], [24]. Most green power plants use wind
turbines and/or solar panels for power generation. Unlike tra-
ditional energy, the availability of green energy varies widely
during the times of a day, seasons of the year, and geographical
locations of the power plants. Such intermittency makes it very
hard for sustainable datacenters to effectively use green energy.

At the same time, many large organizations operate multiple
datacenters in a wide geographical region for several reasons,
e.g., disaster tolerance and uniform access time for widely
distributed clients. The power demands of these datacen-
ters are highly dependent on the resource requirement of
various hosted workloads. But the green power generations

for distributed sustainable datacenters significantly vary over
time and location. It makes the task of workload placement
challenging, especially when the workload is heterogeneous.
For example, most banks have to process the transactional
applications for trading stocks and the batch workloads for
analyzing the model of stock performance at the same time.
Fortunately, the geographical distribution of the datacenters
not only poses challenges but also opens up opportunities in
the cloud workload management.

First, it is difficult to control the system power consumption
under a dynamic power supply rather than under a static
power budget. Most previous studies assume a static power
budget as the constraint for workload management [8], [13],
[14]. However, the green power supply in a self-sustainable
datacenter highly depends on the natural weather conditions
and is often time-varying. It is challenging to effectively match
the power supply and demand in a self-sustainable datacenter.

Second, it is challenging to determine the locations where
cloud workloads should be placed while their performance
requirements are ensured. Datacenters are commonly shared
by many users for quite different uses. An important trend
is to co-locate heterogeneous workloads, i.e., transactional
workloads and batch jobs, on the shared server infrastructure
in datacenters for resource utilization efficiency [2], [4].

Transactional requests are relatively flexible to be dis-
patched to datacenters at different locations for workload
management. However, a batch job’s processing mostly relies
on its data file which is typically not replicated across multiple
datacenters. For example, a log analytic job is highly related
to its local data and hard to be processed in other datacenters.
There is an apparent difference between transactional requests
and batch jobs in their data dependence. Most previous studies
on distributed datacenter management [8], [18], [32] focus on
the transactional workload and pay little attention to batch
jobs. They may significantly affect the system performance
and lead to serious QoS violations when workloads are het-
erogeneous.

Finally, the dynamic green power supply and geographi-
cal distribution of the datacenters also create opportunities
for joint performance-power optimizations in distributed self-
sustainable datacenters: (1) Although transactional workloads
are flexible to be dispatched, their traffic intensities vary
widely over time [7], [12]. Matching the computational loads

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.41

307

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

to the actual power supplies of different datacenters could
achieve significant power savings. (2) Batch jobs can be
migrated from one datacenter to another datacenter where the
current power supply is relatively sufficient. (3) Given the
dynamic power supply, a careful cloud workload placement
and migration planning can maximize the overall system
performance.

In this paper, we propose and develop a heterogeneity-aware
cloud workload placement and migration approach, sCloud,
that aims to maximize the system goodput in distributed self-
sustainable datacenters. The key insight of sCloud is that
the cloud workload, i.e., transactional requests and batch
jobs, can be distributed to different locations based on their
time-varying green power availabilities. Firstly, we model
the intermittent generation of green energy to predict its
production, with respect to the varying weather conditions
at the geographical location of each datacenter. Then, we
model the performance of transactional workload and batch
workload with various resource allocations for each datacenter.
Furthermore, we formulate the core objective of sCloud as
a constrained optimization problem, in which the constraints
capture the QoS requirements, the time-varying workloads
and the intermittent availability of green power. Finally, We
take advantage of batch job migration to reshape the power
demand at different locations when the power supplies of ge-
ographically distributed datacenters vary widely. Specifically,
our contributions are as follows:

• We propose a heterogeneity-aware cloud workload
placement and migration approach in distributed self-
sustainable datacenters. It maximizes the system perfor-
mance in terms of system goodput, based on the time-
varying green power supply, heterogeneous workload
characteristics and QoS requirements.

• We design an optimization-based algorithm to dynami-
cally place transactional requests to distributed datacen-
ters, with respect to their green power supplies. In order to
further improve the system goodput, we integrate another
online algorithm to dynamically migrate batch jobs across
distributed datacenters when the green power supplies
vary widely at different locations.

• We have implemented sCloud in our university cloud
testbed and performed extensive evaluations with real-
world weather conditions and workload traces. Exper-
imental results demonstrate sCloud achieves near-to-
optimal system performance while being resilient to dy-
namic power availability. It outperforms a heterogeneity-
oblivious approach GLB [18] by 26% in system goodput
improvement and 29% in reducing QoS violations.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes the design of
sCloud. Section IV presents the optimization-based workload
and resource management. Section V gives the testbed imple-
mentation. Section VI presents the experimental results and
analysis. Section VII concludes the paper.

II. RELATED WORK

As the environmental concerns and the energy consump-
tion of datacenters continuously grow, developing sustainable
datacenters is becoming an increasingly important mission for
major Internet service operators [2], [8], [18], [22], [32].

The vast majority of the previous studies on the sustainable
energy management has focused on the single datacenters.
These studies aim to achieve sustainable operation driven by
green energy supply partially or completely from following
aspects: (1) Studies [2], [10], [16] focus on the energy demand
side of a datacenter. (2) Studies [9], [15], [30] focus on
matching energy supply of a datacenter server cluster with
its energy demand. (3) Studies [26], [29] focus on different
energy storage approaches in the sustainable datacenters to
improve their green energy usage efficiency.

Aksanli et al. [2] designed an adaptive job scheduler to
increase the green energy usage in a sustainable datacenter,
which utilizes short term prediction of solar and wind energy
production. This scheduling method may violate the QoS
requirement due to unnecessarily delaying batch jobs. Goiri
et al. proposed GreenHadoop [10], a MapReduce framework
for a datacenter powered by solar energy and using electrical
grid as a backup. It aims to maximize the green energy
consumption by job scheduling. It does not consider the
potential opportunities to improve the green energy usage by
workload distribution across distributed datacenters.

A few recent studies start to utilize green energy in dis-
tributed datacenters. Deng et al. [8] proposed an adaptive re-
quest routing approach to meet the operational cost, QoS, and
carbon footprint goals. Zhang et al. [32] proposed GreenWare,
a middleware system that dynamically dispatches transactional
requests to distributed datacenters to maximize the use of
green energy within the allowed operation budget. However,
these studies only consider transactional requests that are of
low cost for routing and do not consider another important
category of cloud workload, i.e., batch jobs.

Recently, Liu et al. proposed GLB [18], a geographical
load balancing approach that can significantly reduce the
required capacity of green energy by using the energy more
efficiently with request dispatching. GLB provides a represen-
tative workload dispatching and capacity provisioning method
to minimize the system energy cost and the request delay
cost. Our work differs from this effort in that we consider
the workload heterogeneity and batch job migration across
distributed datacenters.

III. SCLOUD DESIGN

sCloud is a holistic workload and resource manager that
maximizes the system goodput in the presence of dynamic
green power supply. The key insights are transactional work-
load can be dynamically dispatched to distributed datacenters
in order to reshape the power demand of each datacenter,
and batch jobs, e.g., MapReduce, can be migrated across
datacenters to further improve system performance and green
energy usage. sCloud considers to meet the QoS requirements

308

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The architecture of sCloud.

of heterogeneous workloads while making dispatching and
migration decisions.

Figure 1 shows the architecture of sCloud. In each control
interval, sCloud performs following three tasks:

• Collects the weather forecast information at each geo-
graphical location and predicts its available green power.

• Monitors the performance of applications hosted in each
datacenter and the intensity of heterogeneous workloads.

• Decides how to place the transactional requests to geo-
graphically distributed datacenters, allocate the available
resource to heterogeneous workloads in each datacenter,
and migrate batch jobs across datacenters.

We first propose system goodput, a unified metric to quan-
tify the system performance with heterogeneous workloads.
We then formulate the workload management and resource
provisioning as a constrained optimization problem.

A. Quantifying System Performance

Although heterogeneous workloads have individual mea-
sures of client-perceived performance, such as request re-
sponse time and job completion time, a unified metric is
needed for cloud providers to quantify the benefit of re-
source allocation. We define system goodput as the total
useful work delivered to users in a certain period of time.
Specifically, it is the amount of effective data throughput
completed by interactive requests or batch jobs that meet their
corresponding service level objectives (SLOs). Similar metrics
have been used to quantify system performance for interactive
requests [11] and batch jobs [6], respectively.

Formally, we define system goodput Gi(k) at the ith data-
center in time interval k as the sum of two different workloads:

Gi(k) = Gti(k) +Gbi (k), (1)

where Gti(k) and Gbi (k) are the goodput of transactional
requests and batch jobs, respectively. For heterogeneous work-
loads, Gi(k) is uniformly defined as:

Gi(k) =
(
∑m
l=1 dl) ∗ δi(k)

∆t(k)
, (2)

where dl is the data size of task l in a group of m tasks that
finish during time period k. ∆t(k) is the length of interval k.

To count only useful work, decay function δi(k) discounts the
data throughput from tasks with violated SLOs:

δi(k) =

1 if ti(k) < tsoft.
1− ti(k)−tsoft

tsoft
if tsoft ≤ ti(k) ≤ thard.

0 if ti(k) > thard.
(3)

We use a SLO with two time bounds, thard and tsoft, in
the decay function. While thard sets a hard deadline for task
completion, beyond which no revenue is generated, tsoft is a
soft deadline whose violation will incur reduction in revenue.
We ensure that hard deadlines to be no longer than 2 times of
the soft deadlines so that the decay function never becomes
negative. Accordingly, δi(k) considers the data delivered by m
tasks as useful work if the observed average finish time ti(k)
meets tsoft. Violations of tsoft and thard result in a linear
decay in the counted throughput and zero work, respectively.

For the transactional workload, we treat requests as indi-
vidual tasks and estimate the transaction data size dt(l) as the
size of the response sent back to the clients. For batch jobs,
we use the input data size to approximate the task size db(l).
Typically, these jobs are split and processed by many sub tasks
distributed across a number of computing slots in a cluster. If
there are more tasks than the available slots, the tasks will be
processed by multiple waves [28]. Then the SLO requirement
is divided into the sub-task level as following:

nwave = dntask
nslot

e, (4)

tSLOtask =
tSLOjob

nwave
, (5)

where ntask, nslot and nwave are the number of tasks, slots and
waves for the batch job, respectively. The SLO requirement at
the job level tSLOjob is divided into task level tSLOtask . Many batch
jobs provide the interface to query such execution information,
such as the JobTracker in a Hadoop environment.

B. Optimization Problem Formulation

The optimization problem of sCloud is formulated as,

max
K∑
k=1

N∑
i=1

[Gti(k) +Gbi (k)], (6)

s.t. Pi(k) = P solari (k) + Pwindi (k), (7)

λt(k) =
N∑
i=1

λti(k),∀i ∈ N, k ∈ K, (8)

λti(k) ≥ 0, λbi (k) ≥ 0,∀i ∈ N, k ∈ K. (9)

Objective Eq. (6) aims to maximize the system goodput.
Constraint Eq. (7) represents that the power supply of the
ith datacenter is determined by the local green power gener-
ation amount. Eq. (8) represents that the overall transactional
workload arrival rate is the accumulated value of that at each
datacenter. This is a complex optimization problem with both

309

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
NOTATIONS.

Symbol Meaning

N Total number of datacenters
k Control interval
Pi The total power supply at the ith datacenter

P solar
i The solar power supply at the ith datacenter
Pwind
i The wind power supply at the ith datacenter
λt(k) The system transactional workload arrival rate
λt
i(k) Transactional workload arrival rate at the ith datacenter
λb
i (k) Batch workload arrival rate at the ith datacenter

nonlinear objective function and constraints. To solve the prob-
lem, we first build the green energy model for power supply
prediction. We then model the performance of heterogeneous
workloads in each datacenter. Finally the optimization problem
is transformed to a nonlinear programming problem. The
notations used for problem formulation are listed in Table I.

IV. OPTIMIZATION-BASED MANAGEMENT

A. Green Power Prediction

In contrast to brown energy, solar and wind energy gener-
ation may not provide a reliable, consistent source of energy
due to the time-varying weather conditions. We use prediction
methods to estimate the amount of green energy in a given
interval and utilize that data to make decisions of workload
placement and resource provisioning in distributed datacenters.

We use the model introduced by the work in [23] to
predict solar and wind power. The solar model is based
on the simple premise that energy generation is inversely
related to the amount of cloud coverage. It is expressed as:
P solar(k) = Bsolar(k)(1−CloudCover), where P solar(k) is
the amount of solar power predicted for interval k, Bsolar(k)
is the amount of solar power expected under ideal sunny
conditions, and CloudCover is the forecasted percentage
cloud cover (given as a fraction between 0 and 1). We use
historical data from NREL [19] to instantiate Bsolar.

The wind power model is based on the cubic wind power
production function [23]. That is, Pwind(k) = a×(vw(k))3 +
b, where vw is the windspeed, a and b are parameters de-
pending on the locations. We fit this power curve with the
observed data from NREL [19] using the least-squares method
to generate the wind power model. The parameters a and b
for three locations used in our implementation are obtained as
shown in Table II.

Given the data from NREL [19], we implement solar
and wind energy prediction models at the granularity of 10
minutes. We assume that each sustainable datacenter has 7
solar panels and a micro-turbine with capability of producing
1KW respectively. Figure 3 demonstrates that the average
difference between each observed and predicted value is small.

In this work, we focus on the CPU resource allocation since
CPU is the major power contributor in datacenters [2], [10],
[17]. There is a linear relationship between the available CPU
resource and the power consumption [2], [8]. Thus, the power

TABLE II
WIND POWER MODEL PARAMETERS.

Locations California Hong Kong Dublin
a 0.1732 0.1697 0.1783
b 3.1207 3.0641 2.9372

 0

 200

 400

 600

 800

 1000

0.25 0.5 0.75 1

S
o
la

r
P

o
w

e
r

(w
a
tt
)

CloudCover

Predicted
Recorded

(a) Solar power model prediction.

 0

 200

 400

 600

 800

 1000

3 9 15 21

W
in

d
 P

o
w

e
r

(w
a
tt
)

Wind Speed (mph)

Predicted
Recorded

(b) Wind power model prediction.

Fig. 3. The accuracy of green power prediction.

constraint in the optimization problem is transformed to the
resource availability constraint.

B. Transactional Workload Placement

As in related studies [25], [32], we use the classic queueing
theory to model the performance of heterogeneous workloads
in each datacenter. sCloud includes transactional and batch
workloads in the model to obtain a more realistic system view
in the cloud environment.

1) Transactional workload model: For the transactional
workload, performance goals are typically defined in terms
of the average response time [20] or throughput [11]. As in
previous study [32], we use a multi-server queueing model
M/M/c to model the performance of transactional workload in
a datacenter. The average response time of the requests at the
ith datacenter is represented as

tti =
PQ

cµti − λti
+

1

µti
. (10)

Here, tti includes the waiting time PQ

cµt
i−λt

i
and the service time

1
µt
i
. c is the number of servers and µti is the average service rate

of a single server in the ith datacenter. λti is the request arrival
rate in the ith datacenter. PQ is the probability of requests
waiting in the queue. Similar to others [21], [32], we assume
that all servers will keep busy. Hence, we have PQ equal 1.

2) Batch workload model: The performance of batch work-
load concerns the completion time of individual jobs. For
the batch workload, schedulers, such as Fair Scheduler and
Capacity Scheduler in Hadoop can share the resource among
multiple jobs. We consider there are multiple jobs hosted in
the cluster. As demonstrated in [25], [31], job arrivals can be
modeled by a Poisson process, where the interarrival times are
typically exponentially distributed. Thus, we model the batch
workload at the task level by a M/GI/1/PS queueing system.

In a Hadoop cluster, each job is divided to multiple tasks
for processing. Let tbi denote the average completion time of

310

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

Response time

1
2

3
4

5CPU (GHz) 0.5

1

1.5

2

2.5

λ (10
3
req/s)

 0

 200

 400

 600

 800

 1000

Time (ms)

(a) Average response time.

 0

 200

 400

 600

 800

 1000

1000 2000 3000

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Request Arrival Rate (req/s)

Predicted value
Recorded value

(b) RUBiS Prediction error.

Completion time

1
2

3
4

5CPU (GHz) 5

10

15

20

25

λ (task/min)

0

5

10

15

Time (min)

(c) Average completion time.

 0

 3

 6

 9

 12

20 40 60

A
v
e

ra
g

e
 C

o
m

p
le

ti
o

n
 T

im
e

 (
m

in
)

Task Arrival Rate (task/min)

Predicted value
Recorded value

(d) Hadoop Prediction error.

Fig. 2. Performance model accuracy evaluation with different amount of resources and workloads.

Algorithm 1 The Algorithm of Placement.
1: Initial state v(k), k ← 1;
2: repeat
3: At the beginning of control interval k;
4: Inputs:
5: / Weather forecast: CloudCoveri(k), vwi (k);/
6: / Workloads: λb

i (k), λt(k);/
7: / Service rate: µt

i(k − 1), µb
i (k − 1);/

8: Update the performance model parameters;
9: Predict the available green power Pi(k);

10: Solve the problem by fmincon function in MATLAB;
11: Output: The optimal point V ∗(k) =
{λt

i(k), r
t
i(k), r

b
i (k)};

12: until k = K

the batch tasks. Based on the queueing foundation, we have

tbi =
1

µbi − λbi
. (11)

Here λbi is the workload arrival rate and µbi is the average
service rate that is determined by its resource allocation.

In order to evaluate the accuracy of the models, we im-
plement RUBiS as the transactional workload and Gridmix2
of Hadoop as the batch workload. As shown in Figures 2(a)
and 2(c), the average response time and the completion time
vary when given different amount of resource and workload.
The accuracy is measured by the normalized root mean square
error (NRMSE), a standard metric for deviation. Figures 2(b)
and 2(d) show that the real measured data and predicted data
are very close, with the NRMSE 10.4% and 6.9% for RUBiS
and Hadoop workloads, respectively.

3) Placement algorithm: Given the models above, the
optimization problem described in Section III is trans-
formed to a nonlinear programming problem. Let V (k) =
{λti(k), rti(k), rbi (k)} denote the optimization variable. As
shown in Algorithm 1, at the beginning of each control in-
terval, sCloud takes current weather forecast, workload arrival
rate and the service rate as inputs. It generates the optimal
transactional workload placement solution and resource allo-
cations at each datacenter in the current interval to maximize
the system goodput.

We use the Karush-Kuhn-Tucker conditions [3] to de-
termine the optimal point V ∗(k) for the placement solution
λti(k) and resource allocations rti(k), rbi (k). We implement the

Fig. 4. Batch job migration.

proposed algorithm based on a standard nonlinear program-
ming solver, fmincon, which is provided in the optimization
toolbox of MATLAB.

C. Batch Job Migration

1) Why migrate: Although the transactional workload
placement can effectively distribute the workload to geograph-
ically distributed datacenters, job migration provides another
opportunity to further reallocate the workload according to
the power availability at individual datacenters. When the
power supply is too low for one datacenter, as Algorithm 1
shows, sCloud does not dispatch any transactional requests
to the datacenter. Moreover, sCloud may further migrate jobs
from this datacenter to other datacenters to meet the QoS
requirement and to maximize the system goodput.

2) Where to migrate: Algorithm 2 determines which job
should be migrated and where to migrate. If no new trans-
actional request is placed to a datacenter in the kth interval,
the algorithm is initialized when a new batch job is submitted
to the datacenter i. If job migration is needed, the batch job
is migrated to another datacenter before it starts running at
the source datacenter. Figure 4 illustrates a scenario where
a batch job j is submitted to the datacenter but there is no
sufficient power at the datacenter to run the job in addition to
the currently running jobs and meet their QoS requirements.
sCloud performs two steps to decide where to migrate job j.

Firstly, sCloud selects a destination candidate x from the
potential destination datacenters. It is done by comparing the
completion time of the job j among the possible migration
solutions if j would be migrated from the current datacenter
to others. Note that batch jobs typically rely on their data files
and the job migration incurs additional cost for data transfer.

Specifically, the estimated completion time of the migrated

311

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

 0

 20

 40

 60

 80

 100

0.5 3 6 10

N
u
m

b
e
r

o
f
M

ig
ra

te
d
 J

o
b
s

Job Data Size (GB)

Number of jobs

(a) Data size impact.

 0

 30

 60

 90

 120

 150

10 20 30 40 50D
a
ta

 S
iz

e
 o

f
M

ig
ra

te
d
 J

o
b
s
 (

G
B

)

Bandwidth (Mbps)

Data size of migrated jobs

(b) Bandwidth impact.

Fig. 5. Data size and bandwidth impact on job migration.

job j includes the data transfer delay and the job process
time at the xth datacenter. The delay caused by data transfer
between the source datacenter i and the destination datacenter
x is represented as

tdi,x(j) =
DataSizej

Bandwidthi,x
, (i, x ∈ {1, · · · , N}). (12)

Here, delay tdi,x is determined by the bandwidth between two
datacenters and the amount of data that needs to be transferred.
The amount of data is determined by specific job input and
output data size. We focus on the batch jobs with large scale
input data. Figure 5 depicts the statistical results of batch job
migration in our experiment using FaceD workload [10], [31].
Figure 5(a) shows that the migration of the small jobs is more
frequent than that of the large jobs. Figure 5(b) demonstrates
that the data size of migrated jobs is proportionally increased
when the bandwidth increases.

The job process time at the xth datacenter is estimated as

tprocessx (j) = tbx × nwave, (13)

where tbx is the average task completion time in the xth
datacenter based on the performance model described by
Eq. 11. nwave is the number of waves for job j, which can
be obtained from the JobTracker in a Hadoop environment.

Secondly, the algorithm makes decision of job migration
based on the performance comparison between the destination
candidate x and the current datacenter i. If the completion time
at the current datacenter is longer than that at the destination
candidate, job j is migrated to the destination candidate.
Otherwise, job j is still hosted in the current datacenter.

Algorithm 2 is implemented as a daemon program at each
datacenter, i.e., NameNode of Hadoop cluster.

3) How to migrate: sCloud uses the DistCp in a Hadoop
environment to transfer the job data from the source datacenter
to the destination datacenter. DistCp is a tool used for large
inter-cluster data copying. It is implemented as a MapReduce
job where the work of copying is done by the maps that
run in parallel across the cluster. It tries to give each map
approximately the same amount of data, at least 256 MB. Note
that the DistCp expects the data transfer between the Hadoop
clusters to be of the same version.

Algorithm 2 The Algorithm of Job Migration.
1: Search from the first datacenter, i← 1;
2: repeat
3: if λt

i(k) = 0, Job j submits then
4: /* Find the best destination candidate x*/
5: x = argmin

x
[tdi,x(j) + tprocessx (j)], x ∈ {1, · · · , N}

6: /* Make decision of job migration*/
7: if tprocessi (j) > [tdi,x(j) + tprocessx (j)] then
8: Job j is migrated from i to x
9: end if

10: end if
11: until i = N

 0

 3000

 6000

 9000

6 12 18 24

W
o
rk

lo
a
d
 (

re
q
/s

)

Hour

CA+HK+DUB

(a) Transactional workload.

 0

 60

 120

 180

 240

6 12 18 24

S
u
b
m

is
s
io

n
 r

a
te

 (
jo

b
s
/h

r)

Hour

 CA
 HK

 DUB

(b) Batch job submission rate.

Fig. 6. The transactional and batch workloads traces at CA, HK and DUB.

V. SYSTEM IMPLEMENTATION

A. Testbed

We built a testbed in a university prototype datacenter,
which consists of 108-core CPUs and 704 GB memory.
VMware vSphere 5.0 is used for server virtualization. VMware
vSphere module controls the CPU usage limits in MHz allo-
cated to the virtual machines (VMs). It also provides an API
to support the remote management of VMs.

Large corporations built their distributed datacenters at mul-
tiple regions worldwide, e.g., North America, Asia and Europe.
We built three clusters based on the testbed to mimic three self-
sustainable datacenters located at California (CA), Hong Kong
(HK) and Dublin (DUB), respectively. The average bandwidth
between the clusters is 27Mbps by measurement. Each cluster
includes a number of transactional Web servers and a Hadoop
cluster. The Hadoop used in the experiment is 1.0.3 version
and configured with 11 VMs, i.e., 1 NameNode and 10
DataNode. Fair Scheduler is used in the experiment. As in the
work [28], each DataNode is configured with a single map and
reduce slot. Each VM is allocated 1 VCPU and 1 GB memory.
All VMs use Ubuntu Server 10.04 with Linux 2.6.32.

B. Real-world Workloads

For the transactional workload, we use open-source RU-
BiS as the benchmark and a real Internet trace from
Wikipedia.org [27] to mimic the daily dynamics of workload
volume. The trace represents the users’ behavior in visiting
the Wikipedia website. Figure 6(a) shows the transactional
workload used in the experiments. The number of concurrent
users dynamically changes from 2700 to 6300 in 24 hours.
Our experiments set the soft response time bound to be 1000
ms and the hard response time bound to be 1500 ms [20].

312

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

 0

 500

 1000

 1500

 2000

 2500

6 12 18 24

G
re

e
n

 P
o

w
e

r
(w

a
tt

)

Time (hour)

CA
HK

DUB

(a) Green power supply.

 0

 200

 400

 600

 800

 1000

 1200

6 12 18 24

Ir
ra

d
ia

n
c
e

 (
w

/m
2
)

Time (hour)

CA
HK

DUB

(b) Sun irradiance.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

6 12 18 24

C
lo

u
d

C
o

v
e

r

Time (hour)

CA
HK

DUB

(c) Could cover.

 0

 5

 10

 15

 20

6 12 18 24

W
in

d
 S

p
e

e
d

 (
m

p
h

)

Time (hour)

CA
HK

DUB

(d) Wind speed.

Fig. 7. The local green power supply, sun irradiance, cloud cover and wind speed at California (CA), Hong Kong (HK) and Dublin (DUB).

For the batch workload, we use a synthetic workload,
“Facebook-Derived (FaceD)”, which models Facebook’s pro-
duction workload [10], [31]. FaceD contains jobs with widely
varying execution times and data set sizes, representing a
scenario where the cluster is used to run many different types
of batch applications. By default Hadoop configuration, we
submit all jobs with normal priority in the experiments.

Table III shows the FaceD workload characteristics and
the SLO soft and hard completion time bounds. We do
not run the Facebook code itself. Rather, we mimic the
characteristics of the jobs using “loadgen”. Loadgen is a
configurable MapReduce job from the Gridmix2 benchmark
in the Hadoop distribution. Figure 6(b) shows a real-world
trace from Facebook [5] to mimic the submission rate of jobs.

C. Green Power Supply and Weather Conditions

We use the green power data from the National Renew-
able Energy Laboratory (NREL) database [19]. This database
contains time series data in 10-minute intervals from more
than 30,000 measurement points worldwide. In experiments
we picked three measurement points at CA, HK and DUB to
get real green power traces. Figure 7(a) shows the amount of
green power supply varies over time during one day at CA,
HK and DUB. The time used in the figures is Pacific Time.

To emulate the intermittent availability of green energy, we
use meteorological data from the Measurement and Instrumen-
tation Data Center of NREL [19]. As shown in Figure 7, a
variety of meteorological data, including sun irradiance, cloud
cover, and wind speed, is covered in those records from the
NREL. Prior studies [2], [32] have shown that the data from
the NREL is quite accurate in weather prediction.

TABLE III
FACED WORKLOAD CHARACTERISTICS.

% Jobs # Maps # Reds Data (GB) SLO (min)
(soft-hard)

59 4 1 0.36 1-1.5
9.8 10 1-2 0.69 2-3
8.7 20 1-5 1.65 5-7.5
8.5 40 2-10 2.60 10-15
5.7 80 4-20 5.00 15-22.5
4.4 150 8-38 9.38 30-45
2.5 300 15-75 18.75 50-75
1.3 600 30-150 37.5 100-150

D. SCLOUD Components

1) sCloud Controller: We implement sCloud control al-
gorithm on a separate VM, which issues commands to the
virtualized server cluster using VMware vSphere API 5.0. The
algorithm invokes a nonlinear programming solver fmincon
in the optimization toolbox of MATLAB.

2) Power Monitor: The real-time power consumption of the
virtualized cluster is measured at the resource pool level. The
power monitor gathers the measurement data through VMware
ESX 5.0 Intelligent Power Management Interface sensors.

3) Performance Monitor: For the transactional workload,
it uses a sensor program provided by RUBiS client for
performance monitoring in terms of request response time
and the data size of each request. For MapReduce batch
jobs, it measures each task completion time and task size by
JobTracker on the NameNode periodically.

4) Resource Allocator: It uses vSphere API to impose CPU
usage limits on the VMs. The vSphere module provides an
interface to execute a method ReconfigVM to modify a
VM’s CPU usage limit, ranging from 0 to 2.8 GHz.

VI. PERFORMANCE EVALUATION

We first demonstrate the system goodput achieved by
sCloud. We then illustrate the effectiveness of self-optimizing
workload placement with dynamic green power supply. Fur-
thermore, we show the self-adaptiveness of power consump-
tion control and resource allocation by sCloud. Finally, we
show the effectiveness of batch job migration control and the
power prediction impact on sCloud.

For reference, we obtained the optimal system goodput
based on an offline optimization process using the workload
trace and power supply trace. Note this offline training based
optimization is an ideal but not practical solution. For illustra-
tion, we implemented GLB [18], an online migration-oblivious
geographical load balancing approach for cloud workload. For
fairness, we tailored GLB so that its available resource for
provisioning is also dynamically driven by the power supply.

A. System Goodput Improvement

Figure 8 compares the system goodput achieved by Optimal,
sCloud and GLB approaches in a one-day green power supply
scenario. Figure 8(a) shows that the overall system goodput of
sCloud is 26% more than that achieved by GLB. And sCloud
achieves near-to-optimal performance, obtaining 91% system

313

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

 0

 1000

 2000

 3000

 4000

 5000

Overall RUBiS Hadoop

S
y
s
te

m
 G

o
o
d
p
u
t
(G

B
)

Workloads

Optimal
sCloud

GLB

(a) Overall system goodput.

 0

 400

 800

 1200

CA HK DUB

S
y
s
te

m
 G

o
o
d
p
u
t
(G

B
)

Locations

Optimal
sCloud

GLB

(b) RUBiS workload.

 0

 400

 800

 1200

CA HK DUB

S
y
s
te

m
 G

o
o
d
p
u
t
(G

B
)

Locations

Optimal
sCloud

GLB

(c) Hadoop workload.

Fig. 8. The system goodput improvements in a one-day scenario at California (CA), Hong Kong (HK) and Dublin (DUB).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

CA HK DUB

N
o

rm
a

liz
e

d
 T

im
e

 B
o

u
n

d
 V

io
la

ti
o

n

Locations

Optimal
sCloud

GLB

(a) RUBiS soft violations.

 0

 0.05

 0.1

 0.15

 0.2

CA HK DUB

N
o

rm
a

liz
e

d
 T

im
e

 B
o

u
n

d
 V

io
la

ti
o

n

Locations

Optimal
sCloud

GLB

(b) RUBiS hard violations.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

CA HK DUB

N
o

rm
a

liz
e

d
 T

im
e

 B
o

u
n

d
 V

io
la

ti
o

n

Locations

Optimal
sCloud

GLB

(c) Hadoop soft violations.

 0

 0.05

 0.1

 0.15

 0.2

CA HK DUB

N
o

rm
a

liz
e

d
 T

im
e

 B
o

u
n

d
 V

io
la

ti
o

n

Locations

Optimal
sCloud

GLB

(d) Hadoop hard violations.

Fig. 9. Soft and hard QoS requirement violations of RUBiS and Hadoop workloads at California (CA), Hong Kong (HK) and Dublin (DUB).

 0

 500

 1000

 1500

 2000

T
ra

n
s
a

c
ti
o

n
a

l
w

o
rk

lo
a

d
 (

re
q

/s
)

CA
Optimal
sCloud

GLB

 0

 500

 1000

 1500

 2000

HK

 0

 1000

 2000

 3000

6 12 18 24

Time (hour)

DUB

Fig. 10. RUBiS workload placement.

goodput of the optimal solution. For the goodput of RUBiS
and Hadoop workloads, sCloud outperforms GLB by 23% and
30% while achieving 92% and 89% of Optimal, respectively.

Figures 8(b) and 8(c) show the performance comparison of
three different approaches for RUBiS and Hadoop workloads
at different locations. Figure 8(b) shows that the goodput of
RUBiS workload by sCloud outperforms that by GLB 24%,
27% and 17% at CA, HK and DUB, respectively. And it
achieves 92%, 94% and 90% of the optimal solution at CA,
HK and DUB, respectively. Figure 8(c) shows that the goodput
of Hadoop workload by sCloud outperforms that by GLB
24%, 27% and 17% at CA, HK and DUB, respectively. And
it achieves 92%, 94% and 90% of the optimal solution at CA,
HK and DUB, respectively.

Figure 9 compares the QoS time bound violations of RUBiS
workload and Hadoop workload by Optimal, sCloud and GLB

approaches in the one-day scenario. Figures 9(a) and 9(b) show
that sCloud significantly reduces the soft response time bound
violation and hard response time bound violation of RUBiS
workload by 39% and 43% respectively. Figures 9(c) and 9(d)
show that sCloud also effectively reduces the soft completion
time bound violation and hard completion time bound viola-
tion of Hadoop workload by 35% and 29% respectively.

B. Self-optimizing Placement

Figure 10 provides a microscopic view of the dynamic
RUBiS workload placement by different approaches in the
one-day scenario. It depicts how to place RUBiS requests to
CA, HK and DUB by Optimal, sCloud and GLB. In the first
eight-hour stage, GLB dispatches more requests to DUB due
to more green power supply at DUB. But when the batch
workload at DUB is relative high between the 5th and 7th
hours, sCloud and Optimal allow more requests to be placed
to CA and HK to improve the overall system goodput. This is
due to the fact that sCloud and Optimal take both transactional
and batch workloads into account.

In the second stage, the green power supplies of three
locations are similar with each other. sCloud and Optimal
place more RUBiS workload to DUB than to others since it
has the smallest batch workload. Because the batch workload
at HK is highest during this period, sCloud and Optimal place
smaller RUBiS workload to HK than to GLB.

In the final stage, sCloud and Optimal place more RUBiS
workload to HK and DUB while GLB places the requests to
three datacenters in proportion to their power supplies. This is
because the green power supplies at HK and DUB are more
than that at CA. During the 20th to 22th hours, sCloud and
Optimal place all transactional requests to HK and DUB to

314

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

 0

 5

 10

 15

 20

6 12 18 24

C
P

U
 A

llo
c
a
ti
o
n
 (

G
H

z
)

Time (hour)

Hadoop
RUBiS

(a) Resource allocation at CA.

 0

 5

 10

 15

 20

 25

6 12 18 24

C
P

U
 A

llo
c
a
ti
o
n
 (

G
H

z
)

Time (hour)

Hadoop
RUBiS

(b) Resource allocation at HK.

 0

 5

 10

 15

 20

 25

6 12 18 24

C
P

U
 A

llo
c
a
ti
o
n
 (

G
H

z
)

Time (hour)

Hadoop
RUBiS

(c) Resource allocation at DUB.

Fig. 11. Self-adaptiveness of resource allocation by sCloud at CA, HK and DUB.

 500

 1000

 1500

CA

Power supply
sCloud Consumption

 500

 1000

 1500

HK

 500

 1000

 1500

6 12 18 24

P
o
w

e
r

(w
a
tt
)

Time (hour)

DUB

Fig. 12. Self-adaptiveness of power consumption control.

improve the system goodput. GLB still places RUBiS requests
to three datacenters in proportion to their power supplies,
losing the opportunity for the system goodput optimization.

C. Resource and Power Control

1) Power consumption control: Figure 12 shows sCloud
power consumptions respect the dynamic power supplies at
CA, HK and DUB, respectively. We can observe that sCloud
is able to control the power consumption by adaptively increas-
ing or reducing the available resource at each datacenter. This
is due to the obtained model in Section IV for green power
prediction. sCloud applies a threshold-based power capping
technique [9] to make sure that the real power consumption is
below the real power supply.

2) Resource allocation control: Figure 11 shows the dy-
namic CPU resource allocations between RUBiS workload and
Hadoop workload at CA, HK and DUB, respectively. It shows
that the overall available resources are allocated in proportion
to their green power supplies. Figure 11(a) shows the resource
allocated for RUBiS at CA increases between the 11th and
17th hours as RUBiS workload increases. sCloud allows all
resource to be allocated to Hadoop workload between the 20th
and 22th hours. This is because the Hadoop workload at CA
is relative high and sCloud places all RUBiS workload to HK
and DUB during this period.

As shown in Figure 11(b), sCloud allocates more resource
to RUBiS workload while Hadoop workload is low during
last eight hours. Figure 11(c) shows at DUB datacenter, more
resource is allocated to Hadoop workload during the beginning
stage and the end stage compared to the middle stage. At the

beginning stage, it is to satisfy the increased Hadoop workload
at DUB datacenter. At the end stage, it is to deal with the batch
jobs migrated from CA datacenter.

D. Batch Job Migration

Figures 13(a) and 13(b) show the number of batch jobs and
the amount of their data migrated from CA to HK and CA
to DUB between the 20th and 22th hours. The comparison
between Figure 13(a) and 13(b) illustrates more batch jobs
are migrated from CA to DUB than CA to HK. This is due
to the fact that DUB has more green power supply than HK
has in this period.

Figure 13(c) demonstrates that sCloud’s job migration sig-
nificantly reduces the job soft time bound violations at CA.
Because additional batch jobs are migrated from CA to HK
and DUB, the job completion time violations at HK and DUB
are increased slightly. However, Figure 13(c) illustrates sCloud
has improved the overall soft time bound violation of batch
jobs between the 20th and 22th hours.

E. Power Prediction Impact

Figure 14 shows the impact of the green power prediction
error on the system goodput and QoS violation improvements.
We use the real power supply traces as the baseline to observe
the effectiveness of sCloud under the various power prediction
errors. Figure 14(a) shows that the system goodput improve-
ment is reduced from 37% to -41% as the power prediction
error increases from 0% to 35%. Figure 14(b) demonstrates
both soft and hard time bound violations deteriorate signifi-
cantly as the power prediction error increases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we focus on the heterogeneous workload
management in distributed self-sustainable datacenters. We
have proposed and developed a self-optimizing cloud workload
management approach, sCloud, that can improve the system
goodput with respect to the dynamic green power supply. As
demonstrated by the modeling, optimization and experimental
results based on the testbed implementation, its main contri-
butions are near-to-optimal performance, adaptive workload
management and resilience to dynamic power availability. The
main technical novelty of sCloud lies in the integration of
request placement, dynamic resource allocation and batch job

315

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

 0

 6

 12

 18

 24

 30

 20 20.5 21 21.5 22
 0

 2

 4

 6

 8

 10

N
u
m

b
e
r

o
f
M

ig
ra

te
d
 J

o
b
s

M
ig

ra
te

d
 D

a
ta

 S
iz

e
 (

G
B

)

Time (hour)

Number of jobs
Migrated data size

(a) Job migration from CA to HK.

 0

 10

 20

 30

 40

 50

 20 20.5 21 21.5 22
 0

 2

 4

 6

 8

 10

N
u
m

b
e
r

o
f
M

ig
ra

te
d
 J

o
b
s

M
ig

ra
te

d
 D

a
ta

 S
iz

e
 (

G
B

)

Time (hour)

Number of jobs
Migrated data size

(b) Job migration from CA to DUB.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Overall CA HK DUB

N
o
rm

a
liz

e
d
 T

im
e
 B

o
u
n
d
 V

io
la

ti
o
n

Locations

sCloud with migration
sCloud without migration

(c) Soft time bound violations.

Fig. 13. Batch job migration control and the job soft time bound violations improvement between the 20th to 22th hours.

-0.4

-0.2

 0

 0.2

 0.4

0.1 0.2 0.35

N
o
rm

a
liz

e
d
 G

o
o
d
p
u
t
Im

p
ro

v
e
m

e
n
t

Normalized Power Prediction Error

Goodput improvement

(a) Goodput impact.

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3N
o
rm

a
li
z
e
d
 T

im
e
 B

o
u
n
d
 V

io
la

ti
o
n

Normalized Power Prediction Error

Soft time bound violation

Hard time bound violation

(b) Violation impact.

Fig. 14. Power prediction error impact on performance improvement.

migration. sCloud can significantly improve the system per-
formance and green energy usage by self-optimizing workload
and resource management.

Our future work will integrate the energy storage technique
with sCloud for sustainable computing in green datacenters.

ACKNOWLEDGEMENT

This research was supported in part by U.S. NSF CAREER
award CNS-0844983, research grant CNS-1217979, and NSF
of China research grant 61328203.

REFERENCES

[1] Various green datacenters. http://www.ecobusinesslinks.com/.
[2] B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing. Utilizing green

energy prediction to schedule mixed batch and service jobs in data
centers. In Proc. USENIX HotPower, 2011.

[3] S. Boyd and L. Vandenberghe. Convex optimization. 2004.
[4] D. Carrera, M. Steinder, I. Jordi Torres, and E. Ayguade. Autonomic

placement of mixed batch and transactional workloads. IEEE Trans. on
Parallel and Distributed Systems, 23(1), 2012.

[5] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz. Energy efficiency for
large-scale mapreduce workloads with significant interactive analysis. In
Proc. ACM EuroSys, 2012.

[6] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluating
mapreduce performance using workload suites. In Proc. IEEE/ACM
MASCOTS, 2011.

[7] D. Cheng, Y. Guo, and X. Zhou. Self-tuning batching with dvfs for
improving performance and energy efficiency in servers. In Proc.
IEEE/ACM MASCOTS, 2013.

[8] N. Deng, C. Stewart, D. Gmach, M. Arlitt, and J. Kelley. Adaptive green
hosting. In Proc. ACM ICAC, 2012.

[9] D. Gmach, J. Rolia, C. Bash, Y. Chen, T. Christian, A. Shah, R. Sharma,
and Z. Wang. Capacity planning and power management to exploit
sustainable energy. In Proc. IEEE CNSM, 2010.

[10] I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini.
Greenhadoop: Leveraging green energy in data-processing frameworks.
In Proc. ACM EuroSys, 2012.

[11] Y. Guo, P. Lama, and X. Zhou. Automated and agile server parameter
tuning with learning and control. In Proc. IEEE IPDPS, 2012.

[12] P. Lama, Y. Guo, and X. Zhou. Autonomic performance and power
control for co-located web applications on virtualized servers. In Proc.
ACM/IEEE IWQoS, 2013.

[13] P. Lama, Y. Li, A. Aji, P. Balaji, J. Dinan, S. Xiao, Y. Zhang, W. Feng,
R. Thakur, and X. Zhou. Power-aware dynamic placement and migration
in virtualized GPU environments. In Proc. IEEE ICDCS, 2013.

[14] P. Lama and X. Zhou. Ninepin: Non-invasive and energy efficient
performance isolation in virtualized servers. In Proc. IEEE/IFIP DSN,
2012.

[15] C. Li, R. Zhou, and T. Li. Enabling distributed generation powered
sustainable high-performance data center. In Proc. IEEE HPCA, 2013.

[16] S. Liu, S. Ren, Q. Gang, M. Zhao, and S. Ren. Profit aware load
balancing for distributed cloud data centers. In Proc. IEEE IPDPS,
2013.

[17] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah,
and C. Hyser. Renewable and cooling aware workload management for
sustainable data centers. In Proc. ACM SIGMETRICS, 2012.

[18] Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew. Geographical load
balancing with renewables. In ACM SIGMETRICS, 2011.

[19] NREL. Measurement and instrumentation data center.
http://www.nrel.gov/midc/.

[20] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated control of multiple virtualized resources.
In Proc. ACM EuroSys, 2009.

[21] X. Rao, L.and Liu, L. Xie, and W. Liu. Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment. In Proc. IEEE INFOCOM, 2010.

[22] S. Ren and Y. He. Coca: Online distributed resource management for
cost minimization and carbon neutrality in data centers. In Proc. SC,
2013.

[23] N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy. Cloudy computing:
Leveraging weather forecasts in energy harvesting sensor systems. In
Proc. IEEE CNSM, 2010.

[24] R. Singh, D. Irwin, P. Shenoy, and K. Ramakrishnan. Yank: Enabling
green data centers to pull the plug. In Proc. USENIX NSDI, 2013.

[25] J. Tan, X. Meng, and L. Zhang. Delay tails in mapreduce scheduling.
In Proc. ACM SIGMETRICS, 2012.

[26] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: Practical power-
proportionality for data center storage. In Proc. ACM EuroSys, 2011.

[27] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload analysis
for decentralized hosting. Computer Networks, 53(11), 2009.

[28] A. Verma, L. Cherkasova, and R. H. Campbell. Resource provisioning
framework for mapreduce jobs with performance goals. In Proc.
ACM/IFIP/USENIX Middleware, 2011.

[29] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. K. Fathy.
Energy storage in datacenters: What, where, and how much? In Proc.
ACM SIGMETRICS, 2012.

[30] Y. Wang, R. Chen, Z. Shao, and T. Li. Solartune: Real-time scheduling
with load tuning for solar energy powered multicore systems. In Proc.
IEEE RTCSA, 2013.

[31] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Job scheduling for multi-user mapreduce clusters. In TR
UCB/EECS-2009-55, Berkeley, 2009.

[32] Y. Zhang, Y. Wang, and X. Wang. Greenware: Greening cloud-scale
data centers to maximize the use of renewable energy. In Proc.
ACM/IFIP/USENIX Middleware, 2011.

316

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:47 UTC from IEEE Xplore. Restrictions apply.

