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Abstract—The tremendous growth of cloud computing and large-scale data analytics highlight the importance of reducing datacenter

power consumption and environmental impact of brown energy. While many Internet service operators have at least partially powered

their datacenters by green energy, it is challenging to effectively utilize green energy due to the intermittency of renewable sources,

such as solar or wind. We find that the geographical diversity of internet-scale services can be carefully scheduled to improve the

efficiency of applying green energy in datacenters. In this paper, we propose a holistic heterogeneity-aware cloud workload

management approach, sCloud, that aims to maximize the system goodput in distributed self-sustainable datacenters. sCloud

adaptively places the transactional workload to distributed datacenters, allocates the available resource to heterogeneous workloads in

each datacenter, and migrates batch jobs across datacenters, while taking into account the green power availability and QoS

requirements. We formulate the transactional workload placement as a constrained optimization problem that can be solved by

nonlinear programming. Then, we propose a batch job migration algorithm to further improve the system goodput when the green

power supply varies widely at different locations. Finally, we extend sCloud by integrating a flexible batch job manager to dynamically

control the job execution progress without violating the deadlines. We have implemented sCloud in a university cloud testbed with

real-world weather conditions and workload traces. Experimental results demonstrate sCloud can achieve near-to-optimal system

performance while being resilient to dynamic power availability. sCloud with the flexible batch job management approach outperforms

a heterogeneity-oblivious approach by 37 percent in improving system goodput and 33 percent in reducing QoS violations.

Index Terms—Sustainable datacenter, heterogeneity, job migration, optimization, system goodput, workload placement

Ç

1 INTRODUCTION

AS cloud computing is rapidly growing, services offered
by cloud providers such as Amazon, Microsoft, Face-

book, and Google are implemented on thousands of servers
spread across multiple datacenters. These large datacenters
are significant energy consumers due to not only their
power-hungry computing equipments but also their cooling
and other facilities. Thus, research interests [1], [2], [3], [4]
are growing in integrating renewable energy into datacen-
ters to reduce the environmental impact. Researchers envi-
sion that in the near future datacenters, at least micro-
clouds, can be completely powered by renewable energy
and be self-sustainable [3]. However, unlike traditional
energy, the availability of green energy (such as solar or
wind power generation) may vary widely during the times

of a day, seasons of the year, and geographical locations
of the power plants. Such intermittency makes it very hard
for sustainable datacenters to effectively use green energy.

Meanwhile, major cloud service providers operate multi-
ple geographically distributed datacenters in a wide region
for serval reasons, e.g., disaster tolerance and uniform
access time for widely distributed clients. On one hand, the
power consumption of these datacenters are highly depen-
dent on the resource requirement of dynamic could work-
loads. One the other hand, the green power generations for
distributed sustainable datacenters significantly vary over
time and location. In particular, it is difficult to control the
system power consumption under a dynamic power supply
rather than under a static power budget. Most previous
studies assume a static power budget as the constraint for
workload management [5], [6]. However, the green power
supply in a self-sustainable datacenter highly depends on
the natural weather conditions and is often time-varying. It
is challenging to effectively match the power supply and
demand in a self-sustainable datacenter.

The above characteristic makes the could workload man-
agement challenging, especially when the workload is
heterogeneous. Most datacenters are commonly shared by
many users for quite different uses. They usually support a
range of cloud workloads, including critical interactive
applications that run 24x7, e.g., Internet services and e-busi-
ness sites, and batch-style applications, e.g., scientific appli-
cations and simulations. For example, most banks have to
process the transactional applications for trading stocks and
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the batch workloads for analyzing the model of stock per-
formance at the same time. Consequently, the demand for
various workloads has resulted in several composite work-
load management solutions designed for one or two of these
workloads. Fortunately, the geographical distribution of the
datacenters not only poses challenges but also opens up
opportunities in the cloud workload management.

First, it is challenging to determine the locations where
cloud workloads should be placed while their performance
requirements are ensured. Datacenters are commonly shared
bymany users for quite different uses. An important trend is
to co-locate heterogeneous workloads, i.e., transactional
workloads and batch jobs, on the shared server infrastruc-
ture in datacenters for resource utilization efficiency [1].
Transactional requests are relatively flexible to be dispatched
to datacenters at different locations for workload manage-
ment. However, a batch job’s processing mostly relies on its
data file which is typically not replicated across multiple
datacenters. For example, a log analytic job is highly related
to its local data and hard to be processed in other datacenters.
There is an apparent difference between transactional
requests and batch jobs in their data dependence. Most pre-
vious studies on distributed datacenter management [5], [7],
[8], [9] focus on the transactional workload and pay little
attention to batch jobs. For transactional workloads, the goal
is to maximize request throughput under a certain response
time bound. It requires that resources allocated to transac-
tional workloads be sufficient during the execution of short-
lived requests or clients will observe significant decline in
service quality. However, batch jobs concern the job comple-
tion time in a relatively longer term. It is required that the
aggregate resource allocation during the lifetime of batch
jobs should guarantee job completions before individual
deadlines. Such different characteristics may significantly
affect the system performance and lead to serious QoS viola-
tions whenworkloads are heterogeneous.

Second, the dynamic green power supply and geographi-
cal distribution of the datacenters also create opportunities
for joint performance-power optimizations in distributed self-
sustainable datacenters: (1) Although transactionalworkloads
are flexible to be dispatched, their traffic intensities vary
widely over time [7].Matching the computational loads to the
actual power supplies of different datacenters could achieve
significant power savings. (2) Batch jobs can bemigrated from
one datacenter to another datacenterwhere the current power
supply is relatively sufficient. (3) Given the dynamic power
supply, a careful cloud workload placement and migration
planning canmaximize the overall systemperformance.

In this paper, we propose and develop a heterogeneity-
aware cloud workload placement and migration approach,
sCloud, that aims tomaximize the system goodput in distrib-
uted self-sustainable datacenters. The key insight of sCloud
is that the cloud workload, i.e., transactional requests and
batch jobs, can be distributed to different locations based on
their time-varying green power availabilities. First, wemodel
the intermittent generation of green energy to predict its
production, with respect to the varyingweather conditions at
the geographical location of each datacenter. Then, wemodel
the performance of transactional workload and batch work-
load with various resource allocations for each datacenter.
Furthermore, we formulate the core objective of sCloud as

a constrained optimization problem, in which the constraints
capture the QoS requirements, the time-varying workloads
and the intermittent availability of green power. Finally,
We take advantage of batch job migration to reshape the
power demand at different locations when the power sup-
plies of geographically distributed datacenters varywidely.

Specifically, our contributions are as follows. We propose
a heterogeneity-aware cloud workload placement and
migration approach in distributed self-sustainable datacen-
ters. It maximizes the system performance in terms of
system goodput, based on the time-varying green power
supply, heterogeneous workload characteristics and QoS
requirements. We design an optimization-based algorithm
to dynamically place transactional requests to distributed
datacenters, with respect to their green power supplies. In
order to further improve the system goodput, we integrate
another online algorithm to dynamically migrate batch jobs
across distributed datacenters when the green power sup-
plies vary widely at different locations.

We extend sCloud design from a heterogeneity aware
cloudworkload placement approach to a holistic performance
awareworkload scheduling and resource provisioning system
for sustainable datacenters.We propose anddevelop a flexible
batch job manager to dynamically control the job execution
progress to maximize the overall system goodput. It employs
a novel performance-aware reinforcement learning algorithm
to control the job execution progress of batch jobs in each
datacenter. It is adaptive to bothworkload and power changes
andworks automaticallywithout human interventions.

We have implemented sCloud in our university cloud
testbed and performed extensive evaluations with real-world
weather conditions and workload traces. Experimental
results demonstrate sCloud achieves near-to-optimal system
performance while being resilient to dynamic power avail-
ability. It outperforms a heterogeneity-oblivious approach
GLB [7] by 37 percent in system goodput improvement and
33 percent in reducing QoS violations. The new experimental
result shows sCloud with the flexible batch job management
approach can further increase the system goodput by addi-
tional 11 percent compared to the original sCloud approach.

The rest of this paper is organized as follows. Section 2
describes the design of sCloud. Section 3 presents the
optimization-based workload and resource management.
Section 4 describes the design of flexible batch job manager.
Section 5 gives the testbed implementation. Section 6
presents the experimental results and analysis. Section 7
reviews related work. Section 8 concludes the paper.

2 SCLOUD DESIGN

sCloud is a holistic workload and resource manager that
maximizes the system goodput in the presence of dynamic
green power supply. The key insights are transactional
workload can be dynamically dispatched to distributed
datacenters in order to reshape the power demand of
each datacenter, and batch jobs, e.g., MapReduce, can be
migrated across datacenters to further improve system per-
formance and green energy usage. As a few batch jobs may
be too huge to be migrated, we extend sCloud to temporar-
ily delay these jobs and compensate them later without
violating the deadlines. sCloud considers to meet the QoS
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requirements of heterogeneous workloads while making
dispatching and migration decisions.

Fig. 1 shows the architecture of sCloud. In each control
interval, sCloud performs following three tasks:

� Collects the weather forecast information at each
geographical location and predicts its available green
power.

� Monitors the performance of applications hosted in
each datacenter and the intensity of heterogeneous
workloads.

� Decides how to place the transactional requests to
geographically distributed datacenters and migrate
batch jobs across datacenters.

� Controls the resource allocations between transac-
tional workloads and batch jobs in each datacenter.

We first propose systemgoodput, a unifiedmetric to quan-
tify the system performance with heterogeneous workloads.
We then formulate the workload management and resource
provisioning as a constrained optimization problem.

2.1 Quantifying System Performance

Although heterogeneous workloads have individual meas-
ures of client-perceived performance, such as request res-
ponse time and job completion time, a unified metric is
needed for cloud providers to quantify the benefit of resource
allocation.We define system goodput as the total useful work
delivered to users in a certain period of time. Specifically, it
is the amount of effective data throughput completed by
interactive requests or batch jobs that meet their correspond-
ing service level objectives (SLOs). Similar metrics have
been used to quantify system performance for interactive
requests [10] and batch jobs [11], respectively.

Formally, we define system goodput GiðkÞ at the ith
datacenter in time interval k as the sum of two different
workloads

GiðkÞ ¼ Gt
iðkÞ þGb

iðkÞ; (1)

where Gt
iðkÞ and Gb

iðkÞ are the goodput of transactional
requests and batch jobs, respectively. For heterogeneous
workloads, GiðkÞ is uniformly defined as

GiðkÞ ¼ ð
Pm

l¼1 dlÞ � diðkÞ
DtðkÞ ; (2)

where dl is the data size of task l in a group of m tasks that
finish during time period k. DtðkÞ is the length of interval k.

To count only useful work, decay function diðkÞ discounts
the data throughput from tasks with violated SLOs

diðkÞ ¼
1 if tiðkÞ < tsoft:

1� tiðkÞ�tsoft
tsoft

if tsoft � tiðkÞ � thard:

0 if tiðkÞ > thard:

8><
>: (3)

We use a SLO with two time bounds, thard and tsoft, in the
decay function. While thard sets a hard deadline for task com-
pletion, beyond which no revenue is generated, tsoft is a soft
deadline whose violation will incur reduction in revenue. We
ensure that hard deadlines to be no longer than 2 times of the
soft deadlines so that the decay function never becomes nega-
tive. Accordingly, diðkÞ considers the data delivered by m
tasks as useful work if the observed average finish time tiðkÞ
meets tsoft. Violations of tsoft and thard result in a linear decay
in the counted throughput and zerowork, respectively.

For the transactional workload, we treat requests as indi-
vidual tasks and estimate the transaction data size dtðlÞ as
the size of the response sent back to the clients. For batch
jobs, we use the input data size to approximate the task size
dbðlÞ. Typically, these jobs are split and processed by many
sub tasks distributed across a number of computing slots in a
cluster. If there are more tasks than the available slots, the
tasks will be processed bymultiple waves [12]. Then the SLO
requirement is divided into the sub-task level as following:

nwave ¼ ntask

nslot

� �
; (4)

tSLOtask ¼
tSLOjob

nwave
; (5)

where ntask, nslot and nwave are the number of tasks, slots and
waves for the batch job, respectively. The SLO requirement at
the job level tSLOjob is divided into task level tSLOtask . Many batch
jobs provide the interface to query such execution informa-
tion, such as the JobTracker in aHadoop environment.

2.2 Optimization Problem Formulation

The optimization problem of sCloud is formulated as,

max
XK
k¼1

XN
i¼1
½Gt

iðkÞ þGb
iðkÞ�; (6)

s.t. PiðkÞ ¼ Psolar
i ðkÞ þ Pwind

i ðkÞ; (7)

�tðkÞ ¼
XN
i¼1

�t
iðkÞ; 8i 2 N; k 2 K; (8)

�t
iðkÞ � 0; �b

iðkÞ � 0; 8i 2 N; k 2 K: (9)

Objective Eq. (6) aims to maximize the system goodput.
Constraint Eq. (7) represents that the power supply of the
ith datacenter is determined by the local green power gener-
ation amount. Eq. (8) represents that the overall transac-
tional workload arrival rate is the accumulated value of
that at each datacenter. This is a complex optimization prob-
lem with both nonlinear objective function and constraints.
To solve the problem, we first build the green energy model
for power supply prediction. We then model the perfor-
mance of heterogeneous workloads in each datacenter.

Fig. 1. The architecture of sCloud.
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Finally the optimization problem is transformed to a nonlin-
ear programming problem. The notations used for problem
formulation are listed in Table 1.

3 OPTIMIZATION-BASED MANAGEMENT

3.1 Green Power Prediction

In contrast to brown energy, solar andwind energy generation
may not provide a reliable, consistent source of energy due to
the time-varying weather conditions. We use predictionmeth-
ods to estimate the amount of green energy in a given interval
and utilize that data to make decisions of workload placement
and resource provisioning in distributed datacenters.

We use the model introduced by the work in [13] to
predict solar and wind power. The solar model is based
on the simple premise that energy generation is inversely
related to the amount of cloud coverage. It is expressed as:
PsolarðkÞ ¼ BsolarðkÞð1� CloudCoverÞ, where PsolarðkÞ is the
amount of solar power predicted for interval k, BsolarðkÞ is
the amount of solar power expected under ideal sunny
conditions, and CloudCover is the forecasted percentage
cloud cover (given as a fraction between 0 and 1). We use
historical data from NREL [14] to instantiate Bsolar.

The wind power model is based on the cubic wind power
production function [13]. That is, PwindðkÞ ¼ a� ðvwðkÞÞ3 þ b,
where vw is the windspeed, a and b are parameters depend-
ing on the locations. We fit this power curve with the
observed data from NREL [14] using the least-squares
method to generate the wind power model. The parameters
a and b for three locations used in our implementation are
obtained as shown in Table 2.

Given the data from NREL [14], we implement solar
and wind energy prediction models at the granularity of
10minutes. We assume that each sustainable datacenter has 7
solar panels and amicro-turbine with capability of producing
1KWrespectively. Fig. 3 demonstrates that the average differ-
ence between each observed and predicted value is small.

In this work, we focus on the CPU resource allocation
since CPU is the major power contributor in datacenters [1],
[2], [3]. There is a linear relationship between the available
CPU resource and the power consumption [1], [5]. Thus, the
power constraint in the optimization problem is trans-
formed to the resource availability constraint.

3.2 Transactional Workload Placement

As in related studies [8], [15], we use the classic queueing
theory tomodel the performance of heterogeneousworkloads

in each datacenter. sCloud includes transactional and batch
workloads in themodel to obtain amore realistic system view
in the cloud environment.

3.2.1 Transactional Workload Model

For the transactional workload, performance goals are typ-
ically defined in terms of the average response time [16] or
throughput [10]. We use a multi-server queueing model
M/M/c [17] to model the performance of transactional
workload in a datacenter. Previous study [8] has shown
M/M/c model is accurate to estimate the performance of
transactional requests in a cluster environment. The aver-
age response time of the requests at the ith datacenter is
represented as

tti ¼
PQ

cmt
i � �t

i

þ 1

mt
i

: (10)

Here, tti includes the waiting time
PQ

cmt
i
��t

i

and the service time
1
mt
i

. c is the number of servers and mt
i is the average service

rate of a single server in the ith datacenter. �t
i is the request

arrival rate in the ith datacenter.PQ is the probability of requests

waiting in the queue. Similar to others [8], [18], we assume that

all serverswill keep busy.Hence,we havePQ equal 1.

3.2.2 Batch Workload Model

The performance of batch workload concerns the comple-
tion time of individual jobs. For the batch workload, sched-
ulers, such as Fair Scheduler and Capacity Scheduler
in Hadoop can share the resource among multiple jobs.
We consider there are multiple jobs hosted in the cluster.
As demonstrated in [15], [19], job arrivals can be modeled
by a Poisson process, where the inter arrival times are typi-
cally exponentially distributed. Thus, we model the batch
workload at the task level by a M/GI/1/PS queueing
system [3]. Multiple jobs are hosted in a Hadoop cluster.
Each job is divided to multiple tasks for processing. Let tbi
denote the average completion time of the batch tasks.
Based on the queueing foundation, we have

tbi ¼
1

mb
i � �b

i

: (11)

Here �b
i is the workload arrival rate and mb

i is the average
service rate that is determined by its resource allocation.

In order to evaluate the accuracy of the models, we imple-
ment RUBiS as the transactional workload and Gridmix2 of
Hadoop as the batch workload. As shown in Figs. 2a and 2c,
the average response time and the completion time vary
when given different amount of resource and workload. The
accuracy is measured by the normalized root mean square
error (NRMSE), a standard metric for deviation. Figs. 2b
and 2d show that the real measured data and predicted data

TABLE 1
Notations

Symbol Meaning

N Total number of datacenters

k Control interval

Pi The total power supply at the ith datacenter

Psolar
i The solar power supply at the ith datacenter

Pwind
i The wind power supply at the ith datacenter

�tðkÞ The system transactional workload arrival rate

�t
iðkÞ Trans. workload arrival rate at the ith datacenter

�b
i ðkÞ Batch workload arrival rate at the ith datacenter

TABLE 2
Wind Power Model Parameters

Locations California Hong Kong Dublin

a 0.1732 0.1697 0.1783
b 3.1207 3.0641 2.9372
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are very close, with the NRMSE 10.4 and 6.9 percent for
RUBiS andHadoopworkloads, respectively.

3.2.3 Placement Algorithm

Given the models above, the optimization problem described
in Section 2 is transformed to a nonlinear programming prob-
lem. Let V ðkÞ ¼ f�t

iðkÞ; rtiðkÞ; rbiðkÞg denote the optimization
variable. As shown in Algorithm 1, at the beginning of each
control interval, sCloud takes current weather forecast, work-
load arrival rate and the service rate as inputs. It generates
the optimal transactional workload placement solution and
resource allocations at each datacenter in the current interval
tomaximize the systemgoodput.

Algorithm 1. The Algorithm of Placement

1: Initial state vðkÞ, k 1;
2: repeat
3: At the beginning of control interval k;
4: Inputs:
5: / Weather forecast: CloudCoveriðkÞ, vwi ðkÞ;/
6: / Workloads: �b

iðkÞ, �tðkÞ;/
7: / Service rate: mt

iðk� 1Þ, mb
iðk� 1Þ;/

8: Update the performance model parameters;
9: Predict the available green power PiðkÞ;
10: Solve the problem by fmincon function in MATLAB;
11: Output: The optimal point V �ðkÞ ¼ f�t

iðkÞ; rtiðkÞ; rbiðkÞg;
12: until k =K

We use theKarush-Kuhn-Tucker conditions [20] to deter-
mine the optimal point V �ðkÞ for the placement solution
�t
iðkÞ and resource allocations rtiðkÞ; rbiðkÞ. We implement the

proposed algorithm based on a standard nonlinear program-
ming solver, fmincon, which is provided in the optimization
toolbox ofMATLAB.

3.3 Batch Job Migration

3.3.1 Why Migrate

Although the transactional workload placement can effec-
tively distribute the workload to geographically distributed

datacenters, job migration provides another opportunity
to further reallocate the workload according to the power
availability at individual datacenters. When the power sup-
ply is too low for one datacenter, as Algorithm 1 shows,
sCloud does not dispatch any transactional requests to the
datacenter. Moreover, sCloud may further migrate jobs
from this datacenter to other datacenters to meet the QoS
requirement and to maximize the system goodput.

3.3.2 Where to Migrate

Algorithm 2 determines which job should be migrated and
where to migrate. If no new transactional request is placed
to a datacenter in the kth interval, the algorithm is initial-
ized when a new batch job is submitted to the datacenter i.
If job migration is needed, the batch job is migrated to
another datacenter before it starts running at the source
datacenter. Fig. 4 illustrates a scenario where a batch job j is
submitted to the datacenter but there is no sufficient power
at the datacenter to run the job in addition to the currently
running jobs and meet their QoS requirements. sCloud per-
forms two steps to decide where to migrate job j.

First, sCloud selects a destination candidate x from the
potential destination datacenters. It is done by comparing the
completion time of the job j among the possiblemigration sol-
utions if j would be migrated from the current datacenter to
others. Note that batch jobs typically rely on their data files
and the jobmigration incurs additional cost for data transfer.

Specifically, the estimated completion time of the
migrated job j includes the data transfer delay and the job
process time at the xth datacenter. The delay caused by data
transfer between the source datacenter i and the destination
datacenter x is represented as

tdi;xðjÞ ¼
DataSizej

Bandwidthi;x
; ði; x 2 f1; . . . ; NgÞ: (12)

Here, delay tdi;x is determined by the bandwidth between
two datacenters and the amount of data that needs to be

Fig. 3. The accuracy of green power prediction.

Fig. 2. Performance model accuracy evaluation with different amount of resources and workloads.

Fig. 4. Batch job migration.
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transferred. The amount of data is determined by specific
job input and output data size. We focus on the batch jobs
with large scale input data. Fig. 5 depicts the statistical
results of batch job migration in our experiment using
FaceD workload [2], [19]. Fig. 5a shows that the migration
of the small jobs is more frequent than that of the large jobs.
Fig. 5b demonstrates that the data size of migrated jobs is
proportionally increased when the bandwidth increases.

The job process time at the xth datacenter is estimated as

tprocessx ðjÞ ¼ tbx � nwave; (13)

where tbx is the average task completion time in the xth
datacenter based on the performance model described by
Eq. (11). nwave is the number of waves for job j, which can be
obtained from the JobTracker in a Hadoop environment.

Second, the algorithm makes decision of job migration
based on the performance comparison between the destina-
tion candidate x and the current datacenter i. If the completion
time at the current datacenter is longer than that at the destina-
tion candidate, job j is migrated to the destination candidate.
Otherwise, job j is still hosted in the current datacenter.

Algorithm 2 is implemented as a daemon program at
each datacenter, i.e., NameNode of Hadoop cluster.

Algorithm 2. The Algorithm of Job Migration

1: Search from the first datacenter, i 1;
2: repeat
3: if �t

iðkÞ ¼ 0, Job j submits then
4: /* Find the best destination candidate x */
5: x ¼ argmin

x
½tdi;xðjÞ þ tprocessx ðjÞ�; x 2 f1; . . . ; Ng

6: /* Make decision of job migration */

7: if tprocessi ðjÞ > ½tdi;xðjÞ þ tprocessx ðjÞ� then
8: Job j is migrated from i to x
9: end if
10: end if
11: until i =N

3.3.3 How to Migrate

sCloud uses theDistCp in a Hadoop environment to transfer
the job data from the source datacenter to the destination
datacenter. DistCp is a tool used for large inter-cluster data
copying. It is implemented as a MapReduce job where the
work of copying is done by the maps that run in parallel
across the cluster. It tries to give each map approximately
the same amount of data, at least 256 MB. Note that the
DistCp expects the data transfer between the Hadoop
clusters to be of the same version.

4 FLEXIBLE BATCH JOB MANAGEMENT

To identify the performance impact from different work-
load types, we analyze a representative workload set from a
Fackbook datacenter [2] as shown in Table 3. It shows the
batch jobs contribute majority of the system goodput lost
since their average data size is much larger than transac-
tional workloads’ data size. As these batch jobs may be too
huge to be migrated, it is necessary to further explore more
flexible approaches to improve system performance. Thus,
we extend sCloud to temporarily accelerate or delay these
jobs, and compensate them later without violating their
deadlines. We propose and develop a flexible batch job
manager to dynamically control the job execution progress
to maximize the overall system goodput. It takes advan-
tages of time-varying traffic of transactional workloads and
delay-tolerance of batch jobs to optimize the overall system
performance under dynamic power constraints. It employs
a novel performance-aware reinforcement learning algo-
rithm to control the job execution progress of batch jobs
in each datacenter. The algorithm prioritizes transactional
workloads when possible but also aims to avoid batch job
deadline miss. Based on the predictions of the performance
model, it performs efficient search in the space of all possi-
ble allocation combinations. It is adaptive to both workload
and power changes and works automatically without
human interventions.

For transactional workloads, the goal is to maximize
request throughput under a certain response time bound.
It requires that resources allocated to transactional workloads
be sufficient during the execution of short-lived requests or
clientswill observe significant decline in service quality. Batch
jobs concern the job completion time in a relatively longer
term. It is required that the aggregate resource allocation
during the lifetime of batch jobs should guarantee job comple-
tions before individual deadlines. We formulate the resource
provisioning problem of batch job execution as a reinforce-
ment learning process. We define the state space S and action
set A when applying the reinforcement learning approach.
We use reinforcement learning optimization approach to
obtain an adaptive job progress tuning scheme for large jobs.
Based on practical issues, in the experiments sCloud focuses
on allocating CPU resources, which are commonly believed
to be themajor power consumer in datacenters.

4.1 Problem Formulation and Searching Space

Reinforcement Learning (RL) is a process of learning
through interactions with an external environment so as to
maximize long term rewards defined on a high level goal.
The job progress tuning problem of resource allocation can
be formulated as a finite Markov Decision Process

(MDP). Formally, for a set of states S and a set of actions A,
the MDP is defined by the transition probability Paðs; s0Þ
and a reward function R. At each step t, the adapter

Fig. 5. Data size and bandwidth impact on job migration.

TABLE 3
Analysis of System Goodput Lost

Workloads Goodput Lost % Jobs Average Size

Trans. 5.3 GB 6.2% 47.2 KB
Batch 76.5 GB 0.4% 4.5 GB
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perceives its current state st 2 S and the available action set
AðstÞ. By taking action at 2 AðstÞ, the adapter transits to
the next state stþ1 and receives a reward Rtþ1 from the envi-
ronment. The value function of taking action a in state s can
be defined as: Qðs; aÞ ¼ EfP1

k¼0 g
kRtþkþ1jst ¼ s; at ¼ ag,

where 0 � g < 1 is a discount factor.
We define the state space S as the set of possible parame-

ter values. States defined on the configurations are deter-
ministic in that Paðs; sÞ ¼ 1, which simplifies the RL
problem. We represent the state space as a collection of state
vectors: s ¼ ½�i�; i 2 ½1; N �. The elements in the state vector
are the job progress control factors for batch jobs at different
datacenters. As shown in Fig. 6, �i is the progress factor to
determine how long the batch job can be delayed or acceler-
ated compared to the job execution progress achieved in the
previous control interval at the ith datacenter. Formally,
we define �i ¼ Proiðkþ 1Þ=ProiðkÞ, where Proiðkþ 1Þ and
ProiðkÞ are the batch job progress in the kþ 1th and kth
interval, respectively. We shrink the searching space of
these ratios to a reasonable range (i.e., �i 2 ½�1;þ1�) in order
to accelerate the search speed. The tuning granularity of �i
is empirically set to 0.05 in the experiment. The action set
(A) is represented as a collection of action vectors (a):
A ¼ ½�i�. Only one datacenter is considered at a time and
only one-step tuning is allowed. It follows the natural trail-
and-error method that searches the configuration state
space exhaustively. More importantly, resource adjustment
in small steps smooths the tuning process.

4.2 Performance-Aware Reward Function

In the resource sharing configuration problem, the desired
configurations are the ones which improve system-wide
performance (i.e., goodput for both transactional workloads
and batch jobs). The rewards are the summarized perfor-
mance of individual datacenter feedbacks on the resulted
new configuration. The performance is measured by a
reward which is the ratio of current goodhput (Gb

i ) to a refer-
ence goodput plus possible penalties when task level SLOs
are violated

reward ¼ Gb
i

Gb
iðrefÞ

� penalty;

penalty ¼ 0 if ttask � SLO;
ttask
tSLO

Otherwise.

( (14)

The reference goodput (Gb
iðrefÞ) value is the maximum

achievable batch job processing rate without any task level
SLO violations. We obtained the reference for one batch job
by giving sufficient resource to guarantee the job execution

progress. The task level SLO equals the soft time bound pro-
posed in Section 2 so that the overall job level execution prog-
ress is ensured. This constraint guarantees that the job delay
latency is not continuously increasing and the system that
can remain stable. A low reward indicates this job execution
may miss the soft deadline or the hard deadline, both of
which should be avoidedwhen tuning resource allocations.

4.3 Solution of Search Algorithm

The solution of the RL problem aims to maximize the cumu-
lative rewards at each state. It is equivalent to finding an
estimation of Qðs; aÞ which approximates its actual value.
The experience-based solution is based on the theory that
the average of the sample Qðs; aÞ values collected approxi-
mates the actual value of Qðs; aÞ given sufficiently large
number of samples. A sample is in the form of (st, at, Rtþ1).
The basic RL algorithms in experience based solution are
called temporal-difference methods, which update Qðs; aÞ
at each time a sample is collected

Qðst; atÞ ¼ Qðst; atÞ
þ a � ½Rtþ1 þ g �Qðstþ1; atþ1Þ �Qðst; atÞ�;

(15)

where a is the learning rate and g is the discount factor. The Q
values are usually stored in a look-up table and updated by
writing new values to the corresponding entries in the table.
Starting from any initial policy, the adapter gradually refines
the policy based on the feedback perceived at each step.

5 SYSTEM IMPLEMENTATION

5.1 Testbed

We built a testbed in a university prototype datacenter,
which consists of 276-core CPUs, 2.1 TB memory and 102 TB
disk storage. VMware vSphere 5.5 was used for server virtu-
alization. VMware vSphere module controls the CPU usage
limits inMHz allocated to the virtual machines (VMs). It also
provides an API to support the remote management of VMs.
The power monitor gathers the real-time measured power
consumption of individual VMs through VMware ESXi 5.5
Intelligent PowerManagement Interface Sensors [21].

Large corporations built their distributed datacenters at
multiple regions worldwide, e.g., North America, Asia and
Europe. We built three clusters based on the testbed to
mimic three self-sustainable datacenters located at Califor-
nia (CA), Hong Kong (HK) and Dublin (DUB), respectively.
The average bandwidth between the clusters is 27 Mbps by
measurement. Each cluster includes a number of transac-
tional Web servers and a Hadoop cluster. The Hadoop used
in the experiment is 1.0.3 version and configured with 11
VMs, i.e., 1 MasterNode and 10 SlaveNode. Fair Scheduler is
used in the experiment. As in the work [12], each Slave
Node is configured with a single map and reduce slot. Each
VM is allocated 1 VCPU and 1 GB memory. The block size
is configured 64 MB in our experiments. All VMs use
Ubuntu Server 10.04 with Linux 2.6.32.

5.2 Real-World Workloads

For the transactional workload, we use open-source RUBiS
as the benchmark and a real Internet trace from Wikipedia.
org [22] to mimic the daily dynamics of workload volume.

Fig. 6. Flexible batch job progress management.
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The trace represents the users’ behavior in visiting the Wiki-
pedia website. Fig. 7a shows the transactional workload
used in the experiments. The number of concurrent users
dynamically changes from 2,700 to 6,300 in 24 hours. Our
experiments set the soft response time bound to be 1,000 ms
and the hard response time bound to be 1,500 ms [16].

For the batch workload, we use a synthetic workload,
“Facebook-Derived (FaceD)”, which models Facebook’s
production workload [2], [19]. FaceD contains jobs with
widely varying execution times and data set sizes, repre-
senting a scenario where the cluster is used to run many
different types of batch applications. By default Hadoop
configuration, we submit all jobs with normal priority in
the experiments.

Table 4 shows the FaceD workload characteristics and
the SLO soft and hard completion time bounds. We do not
run the Facebook code itself. Rather, we mimic the charac-
teristics of the jobs using “loadgen”. Loadgen is a configura-
ble MapReduce job from the Gridmix2 benchmark in the
Hadoop distribution. Fig. 7b shows a real-world trace from
Facebook [23] to mimic the submission rate of jobs.

5.3 Green Power Supply and Weather Conditions

We use the green power data from the National Renewable
Energy Laboratory (NREL) database [14]. This database
contains time series data in 10-minute intervals from more
than 30,000 measurement points worldwide. In experiments
we picked three measurement points at CA, HK and DUB
to get real green power traces. Fig. 8a shows the amount of
green power supply varies over time during one day at CA,
HK and DUB. The time used in the figures is Pacific Time.

To emulate the intermittent availability of green energy,
we use meteorological data from the Measurement and
Instrumentation Data Center of NREL [14]. As shown in
Fig. 8, a variety of meteorological data, including sun irra-
diance, cloud cover, and wind speed, is covered in those
records from the NREL. Prior studies [1], [8] have shown
that the data from the NREL is quite accurate in weather
prediction.

5.4 SCLOUD Components

1) sCloud Controller: We implement sCloud control
algorithm on a separate VM, which issues commands
to the virtualized server cluster using VMware
vSphere API 5.0. The algorithm invokes a nonlinear
programming solver fmincon in the optimization
toolbox ofMATLAB.

2) Power Monitor: The real-time power consumption of
the virtualized cluster is measured at the resource
pool level. The power monitor gathers the measure-
ment data through VMware ESX 5.0 Intelligent
Power Management Interface sensors.

3) Performance Monitor: For the transactional work-
load, it uses a sensor program provided by RUBiS cli-
ent for performance monitoring in terms of request
response time and the data size of each request.
For MapReduce batch jobs, it measures each task
completion time and task size by JobTracker on the
NameNode periodically.

4) Resource Allocator: It uses vSphere API to impose
CPU usage limits on the VMs. The vSphere module
provides an interface to execute a method
ReconfigVM to modify a VM’s CPU usage limit,
ranging from 0 to 2.8 GHz.

5) Flexible Batch Job Manager: The online RL adapter
was deployed with a table-based Q function which
was initialized to all zeros. We used the Sarsa(0)
algorithm [24] to drive the flexible batch job adapter.

6 PERFORMANCE EVALUATION

We first demonstrate the system goodput achieved by
sCloud and illustrate the effectiveness of self-optimizing
workload placement with dynamic green power supply.
We then demonstrate the effectiveness of the flexible batch
job manager in terms of system goodput and time bound
violation. Furthermore, we show the self-adaptiveness of

Fig. 7. The workloads traces at CA, HK and DUB.

TABLE 4
FaceD Workload Characteristics

% Jobs # Maps # Reds Data (GB) SLO (min)
(soft-hard)

59 4 1 0.36 1-1.5
9.8 10 1-2 0.69 2-3
8.7 20 1-5 1.65 5-7.5
8.5 40 2-10 2.60 10-15
5.7 80 4-20 5.00 15-22.5
4.4 150 8-38 9.38 30-45
2.5 300 15-75 18.75 50-75
1.3 600 30-150 37.5 100-150

Fig. 8. The local green power supply, sun irradiance, cloud cover and wind speed at California (CA), Hong Kong (HK) and Dublin (DUB).

382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:42:57 UTC from IEEE Xplore.  Restrictions apply. 



power consumption control and resource allocation by
sCloud. Finally, we show the effectiveness of batch job migra-
tion control and the power prediction impact on sCloud.

For reference, we obtained the optimal system goodput
based on an offline optimization process using the workload
trace and power supply trace. Note this offline training
based optimization is an ideal but not practical solution. For
illustration, we implemented GLB [7], an online migration-
oblivious geographical load balancing approach for cloud
workload. For fairness, we tailored GLB so that its available
resource for provisioning is also dynamically driven by the
power supply.

6.1 System Goodput Improvement

Fig. 9 compares the system goodput achieved by Optimal,
sCloud and GLB approaches in a one-day green power sup-
ply scenario. Fig. 9a shows that the overall system goodput
of sCloud is 26 percent more than that achieved by GLB.
And sCloud achieves near-to-optimal performance, obtain-
ing 91 percent system goodput of the optimal solution. For
the goodput of RUBiS and Hadoop workloads, sCloud out-
performs GLB by 23 and 30 percent while achieving 92 and
89 percent of Optimal, respectively.

Figs. 9b and 9c show the performance comparison of
three different approaches for RUBiS and Hadoop work-
loads at different locations. Fig. 9b shows that the goodput
of RUBiS workload by sCloud outperforms that by GLB 24,
27 and 17 percent at CA, HK and DUB, respectively. And it
achieves 92, 94 and 90 percent of the optimal solution at CA,
HK and DUB, respectively. Fig. 9c shows that the goodput
of Hadoop workload by sCloud outperforms that by GLB
24, 27 and 17 percent at CA, HK and DUB, respectively.
And it achieves 92, 94 and 90 percent of the optimal solution
at CA, HK and DUB, respectively.

Fig. 10 compares the QoS time bound violations of RUBiS
workload and Hadoop workload by Optimal, sCloud and
GLB approaches in the one-day scenario. Figs. 10a and 10b

show that sCloud significantly reduces the soft response
time bound violation and hard response time bound viola-
tion of RUBiS workload by 39 and 43 percent respectively.
Figs. 10c and 10d show that sCloud also effectively reduces
the soft completion time bound violation and hard comple-
tion time bound violation of Hadoop workload by 35 and 29
percent respectively.

6.2 Self-Optimizing Placement

Fig. 11 provides a microscopic view of the dynamic RUBiS
workload placement by different approaches in the one-day
scenario. It depicts how to place RUBiS requests to CA, HK
and DUB by Optimal, sCloud and GLB. In the first eight-
hour stage, GLB dispatches more requests to DUB due to
more green power supply at DUB. But when the batch
workload at DUB is relative high between the 5th and 7th
hours, sCloud and Optimal allow more requests to be

Fig. 9. The goodput improvements in a one-day scenario at California (CA), Hong Kong (HK) and Dublin (DUB).

Fig. 10. Soft and hard QoS violations of RUBiS and Hadoop at California (CA), Hong Kong (HK) and Dublin (DUB).

Fig. 11. RUBiS workload placement.
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placed to CA and HK to improve the overall system good-
put. This is due to the fact that sCloud and Optimal take
both transactional and batch workloads into account.

In the second stage, the green power supplies of three
locations are similar with each other. sCloud and Optimal
place more RUBiS workload to DUB than to others since
it has the smallest batch workload. Because the batch work-
load at HK is highest during this period, sCloud and
Optimal place smaller RUBiS workload to HK than to GLB.

In the final stage, sCloud and Optimal place more RUBiS
workload to HK and DUB while GLB places the requests to
three datacenters in proportion to their power supplies. This
is because the green power supplies at HK and DUB aremore
than that at CA. During the 20th to 22th hours, sCloud and
Optimal place all transactional requests to HK and DUB to
improve the system goodput. GLB still places RUBiS requests
to three datacenters in proportion to their power supplies,
losing the opportunity for the systemgoodput optimization.

6.3 Flexible Batch Job Management

Fig. 12 demonstrates the effectiveness of the flexible batch job
manager in terms of system goodput and time bound viola-
tion. Fig. 12a shows that sCloud with the flexible batch job
manager increases the system goodput by 11 percent com-
pared to sCloud without the flexible batch job manager. CA
and HK achieve higher performance improvement than DUB
since the power and resource availability at CA and HK fluc-
tuates wildly compared to DUB. It provides more opportuni-
ties to manage the batch job execution progress in a flexible
manner. For example, a batch job at CAmay be slow down at
the 10th hour and then be speed up at the 11th hour without
violating its deadline. This is due to the fact that the power
supply at the 11th hour is significantly increased and the job
executionmay still catch the deadline after a small delay.

Figs. 12b and 12c compare the soft and hard time bound
violations for Hadoop and RUBiS workloads respectively.
It shows that the proposed flexible batch job manager effec-
tively reduces the deadline violations of Hadoop workload
while it slightly increases the time violations of BUBiS
workload. Even a single batch job misses the hard deadline,
it may loss a large amount of system goodput due to the

large input size. For example, we analyze the system good-
put improvement of the selected workload set as shown in
Table 5. Comparison between Tables 5 and 3 demonstrates
only 0.12 percent of batch jobs contribute about 43 percent
goodput improvement. Fig. 12b shows the hard time bound
violation of Hadoop is significantly improved compared to
the soft time bound violation. This is because the designed
reward function prefers to allocate more resource to the jobs
approaching hard deadlines, which aims to avoid signifi-
cant system goodput lost.

6.4 Benefit by Batch Job Size

Fig. 13 shows there are different deadline violation
improvements by the proposed sCloud with Flexible Batch
job Manager (FBM) under various batch job sizes. We use
the deadline violations achieved by GLB as the baseline.
The result demonstrates FBM achieves better soft time
bound violation improvement for small jobs and better hard
time bound violation improvement for big jobs. Apparently,
sCloud with FBM can effectively reduce the hard deadline
misses by the adaptive reward setting in Section 4. How-
ever, the proposed flexible batch job manager relies on the
reinforcement learning process, which typically needs a few
time to search the suitable job execution progress by setting
the delay factor. These big jobs with long execution process
provide more time to speed up or slow down the job prog-
ress. This is the reason why batch jobs with large sizes get
more benefit from the flexible batch job management.

6.5 Resource and Power Control

6.5.1 Power Consumption Control

Fig. 14 shows sCloud power consumptions respect the
dynamic power supplies at CA, HK and DUB, respectively.

Fig. 12. Effectiveness of flexible batch job manager in terms of system goodput and time bound violation.

TABLE 5
Effectiveness of System Goodput Improvement

Workloads Goodput Lost % Jobs Average Size

Trans. 5.7 GB 6.9% 47.8 KB
Batch 42.6 GB 0.28% 4.9 GB

Fig. 13. Effectiveness under various batch job sizes.
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We can observe that sCloud is able to control the power con-
sumption by adaptively increasing or reducing the available
resource at each datacenter. This is due to the obtained
model in Section 3 for green power prediction. sCloud
applies a threshold-based power capping technique [25]
to make sure that the real power consumption is below
the real power supply. More results about the impact of the
green power prediction error on system performance can be
found in our preliminary study [26].

6.5.2 Resource Allocation Control

Fig. 15 shows the dynamic CPU resource allocations
between RUBiS workload and Hadoop workload at CA, HK
and DUB, respectively. It shows that the overall available
resources are allocated in proportion to their green power
supplies. Fig. 15a shows the resource allocated for RUBiS at
CA increases between the 11th and 17th hours as RUBiS
workload increases. sCloud allows all resource to be allo-
cated to Hadoop workload between the 20th and 22th
hours. This is because the Hadoop workload at CA is rela-
tive high and sCloud places all RUBiS workload to HK and
DUB during this period. A few batch jobs and their data are
migrated from CA to HK and CA to DUB between the 20th
and 22th hours. More detailed results about the batch job
migration can be found in our preliminary study [26].

As shown in Fig. 15b, sCloud allocates more resource
to RUBiS workload while Hadoop workload is low during
last eight hours. Fig. 15c shows at DUB datacenter, more
resource is allocated to Hadoop workload during the

beginning stage and the end stage compared to the middle
stage. At the beginning stage, it is to satisfy the increased
Hadoop workload at DUB datacenter. At the end stage, it is
to deal with the batch jobs migrated from CA datacenter.

6.6 Sensitivity of Parameter Selection

We change the values of the flexible batch job management
interval and the control factor adjustment step to study their
impacts on the performance improvement in terms of the
system goodput. Fig. 16a shows that the goodput initially
decreases as the tuning interval increases. However,
increasing the tuning interval further leads to performance
degradation. This tells that a very large tuning interval may
lead to the system goodput deterioration. Thus, we empiri-
cally set the tuning interval to 6 minutes in the experiment.
It is a tradeoff between the search speed and the the system
goodput improvement. Fig. 16b shows tuning the adjust-
ment step of the control factor has the similar phenomenon
with tuning the tuning interval of the flexible batch job man-
ager in the experiment. A large adjustment step setting (e.g.,
0.125) leads significant performance deterioration due to the
instability of streaming system data processing. Thus, we
empirically set the progress control factor adjustment step
to 0.05 without impacting system stability in the experi-
ment. Please note that these parameters are sensitive to
workload characteristics. For example, a large batch job
may prefer a larger adjustment step so that it can find a
good configuration in time.

7 RELATED WORK

Research interests are growing in integrating green energy
into datacenters as the environmental concerns and the
energy consumption of datacenters continuously grow.
Major Internet service operators [1], [7], [8], [27] start to
develop sustainable datacenters and treat it as an increas-
ingly important mission. For example, HP Lab built up the
Net-Zero Energy datacenter recently [3]. Unlike traditional

Fig. 14. Self-adaptiveness of power consumption control.

Fig. 15. Self-adaptiveness of resource allocation by sCloud at CA, HK and DUB.

Fig. 16. Sensitivity of control parameter selection.
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energy, the intermittency of renewable energy makes it very
hard to maintain a stable cluster resource availability to pro-
cess workloads. Goiri et al. proposed GreenHadoop [2], a
MapReduce framework for Parasol, a prototype green clus-
ter built in Rutgers University. It aims to maximize the
green energy consumption by job scheduling. It does not
consider the potential opportunities to improve the green
energy usage by workload distribution across distributed
datacenters. The vast majority of the previous studies on the
sustainable energy management has focused on the single
datacenters. These studies aim to achieve sustainable opera-
tion driven by green energy supply partially or completely
from following aspects: (1) Studies [1], [2] focus on the
energy demand side of a datacenter. (2) Studies [25], [28]
focus on matching energy supply of a datacenter server
cluster with its energy demand. (3) Studies [29], [30] focus
on different energy storage approaches in the sustainable
datacenters to improve their green energy usage efficiency.

Many recent studies [25], [31] make efforts to control the
renewable energy generation and supply in order to improve
renewable energy usage in datacenters. Gmach et al., [25]
proposed an approach for designing a power management
plan that can match the power supply with the power
demand in datacenters using renewable energy. The power
management plan defines a choice for a mix of baseline
power, e.g., from the power grid, power from renewable
energy sources, and stored energy. Stewart et al., proposed
renewable energy management approaches to maximize
the use of off-grid renewable energy in datacenters [31].
When renewables are intermittently unavailable, datacenters
must get power from other energy sources. Recently, Aksanli
et al. [1] designed an adaptive job scheduler to increase the
green energy usage in a sustainable datacenter, which
utilizes short term prediction of solar and wind energy
production. This scheduling method may violate the QoS
requirement due to unnecessarily delaying batch jobs.

Studies [32], [33] have shown that it is challenging to power
a datacenter using only local wind and solar energy without
large-scale storage, due to the intermittency and unpredict-
ability of these sources. Thus, a few recent studies start to
utilize green energy in distributed datacenters. Deng et al. [5]
proposed an adaptive request routing approach to meet the
operational cost, QoS, and carbon footprint goals. Zhang
et al. [8] proposed GreenWare, a middleware system that
dynamically dispatches transactional requests to distributed
datacenters to maximize the use of green energy within
the allowed operation budget. However, these studies
only consider transactional requests that are of low cost for
routing and do not consider another important category of
cloud workload, i.e., batch jobs. Recently, Liu et al. proposed
GLB [7], a geographical load balancing approach that can
significantly reduce the required capacity of green energy by
using the energy more efficiently with request dispatching.
Ourwork differs from this effort in that we consider the work-
load heterogeneity and batch job migration across distributed
datacenters.

8 CONCLUSION AND FUTURE WORK

In this paper, we find heterogeneous cloud workloads
should be carefully scheduled in distributed self-sustainable

datacenters to maximize the overall system performance.
We have proposed and developed a self-optimizing cloud
workload management approach, sCloud, that can improve
the system goodput with respect to the dynamic green
power supply. Furthermore, we have extended sCloud by
integrating a flexible batch job manager to dynamically
control the job execution progress without violating the
deadlines. The main technical novelty of sCloud lies in
the integration of request placement, dynamic resource
allocation and batch job migration. sCloud can significantly
improve the system performance and green energy usage
by self-optimizing workload and resource management.
The new experimental result shows sCloud with the flexible
batch job management approach can further increase
the system goodput by additional 11 percent compared to
the original sCloud approach. Our future work will integrate
the virtualization techniques and the renewable energy
distribution methods with sCloud to further improve sus-
tainable computing in green datacenters.
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