
Improving Performance of Heterogeneous
MapReduce Clusters with Adaptive Task Tuning

Dazhao Cheng,Member, IEEE, Jia Rao,Member, IEEE, Yanfei Guo,Member, IEEE,

Changjun Jiang,Member, IEEE, and Xiaobo Zhou, Senior Member, IEEE

Abstract—Datacenter-scale clusters are evolving toward heterogeneous hardware architectures due to continuous server

replacement. Meanwhile, datacenters are commonly shared by many users for quite different uses. It often exhibits significant

performance heterogeneity due to multi-tenant interferences. The deployment of MapReduce on such heterogeneous clusters

presents significant challenges in achieving good application performance compared to in-house dedicated clusters. As most

MapReduce implementations are originally designed for homogeneous environments, heterogeneity can cause significant

performance deterioration in job execution despite existing optimizations on task scheduling and load balancing. In this paper, we

observe that the homogeneous configuration of tasks on heterogeneous nodes can be an important source of load imbalance and thus

cause poor performance. Tasks should be customized with different configurations to match the capabilities of heterogeneous nodes.

To this end, we propose a self-adaptive task tuning approach, Ant, that automatically searches the optimal configurations for individual

tasks running on different nodes. In a heterogeneous cluster, Ant first divides nodes into a number of homogeneous subclusters based

on their hardware configurations. It then treats each subcluster as a homogeneous cluster and independently applies the self-tuning

algorithm to them. Ant finally configures tasks with randomly selected configurations and gradually improves tasks configurations by

reproducing the configurations from best performing tasks and discarding poor performing configurations. To accelerate task tuning

and avoid trapping in local optimum, Ant uses genetic algorithm during adaptive task configuration. Experimental results on a

heterogeneous physical cluster with varying hardware capabilities show that Ant improves the average job completion time by 31, 20,

and 14 percent compared to stock Hadoop (Stock), customized Hadoop with industry recommendations (Heuristic), and a profiling-

based configuration approach (Starfish), respectively. Furthermore, we extend Ant to virtual MapReduce clusters in a multi-tenant

private cloud. Specifically, Ant characterizes a virtual node based on two measured performance statistics: I/O rate and CPU steal time.

It uses k-means clustering algorithm to classify virtual nodes into configuration groups based on the measured dynamic interference.

Experimental results on virtual clusters with varying interferences show that Ant improves the average job completion time by 20, 15,

and 11 percent compared to Stock, Heuristic and Starfish, respectively.

Index Terms—MapReduce performance improvement, self-adaptive task tuning, heterogeneous clusters, genetic algorithm

Ç

1 INTRODUCTION

IN the past few years, MapReduce has proven to be an
effective platform to process a large set of unstructured

data as diverse as sifting through system logs, running
extract transform load operations, and computing web
indexes. Since big data analytics requires distributed com-
puting at scale, usually involving hundreds to thousands of
machines, access to such facilities becomes a significant bar-
rier to practicing big data processing in small business.
Deploying MapReduce in datacenters or cloud platforms,

offers a more cost-effective model to implement big data
analytics. However, the heterogeneity in datacenters and
clouds present significant challenges in achieving good
MapReduce performance [1], [2].

Hardware heterogeneity occurs because servers are grad-
ually upgraded and replaced in datacenters. Interferences
from multiple tenants sharing the same cloud platform can
also cause heterogeneous performance even on homoge-
neous hardware. The difference in processing capabilities
on MapReduce nodes breaks the assumption of homoge-
neous clusters in MapReduce design and can result in load
imbalance, which may cause poor performance and low
cluster utilization. To improve MapReduce performance in
heterogeneous environments, work has been done to make
task scheduling [2], [3] and load balancing [1], [4] heteroge-
neity aware. Despite these optimizations, most MapReduce
implementations such as Hadoop still perform poorly in
heterogeneous environments. For the ease of management,
MapReduce implementations use the same configuration
for tasks. Existing research [5], [6] has shown that Map-
Reduce configurations should be set according to cluster
size and hardware configurations. Thus, running tasks with
homogeneous configurations on heterogeneous nodes inevi-
tably leads to sub-optimal performance.

� D. Cheng is with the Department of Computer Science, University of
North Carolina at Charlotte, NC 28223. E-mail: dazhao.cheng@uncc.edu.

� J. Rao and X. Zhou are with the Department of Computer Science, Univer-
sity of Colorado, Colorado Springs, CO 80918.
E-mail: {jrao, xzhou}@uccs.edu.

� C. Jiang is with the Department of Computer Science & Technology,
Tongji University, 4800 Caoan Road, Jiading, Shanghai 201804, China.
E-mail: cjjiang@tongji.edu.cn.

� Y. Guo is currently a Postdoc Fellow in the Argonne National Lab, Lemont,
IL 60439. E-mail: yguo@anl.gov.

Manuscript received 14 Oct. 2015; revised 14 June 2016; accepted 12 July
2016. Date of publication 27 July 2016; date of current version 15 Feb. 2017.
Recommended for acceptance by F. Cappello.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2594765

774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

In this work, we propose a task tuning approach that
allows tasks to have different configurations, each optimized
for the actual hardware capabilities, on heterogeneous nodes.
We address the following challenges in automatic MapRe-
duce task tuning. First, determining the optimal task configu-
ration is a tedious and error-prone process. A large number of
performance-critical parameter can have complex interplays
on task execution. Previous studies [6], [7], [8], [9] have shown
that it is difficult to constructmodels to connect parameter set-
tings with MapReduce performance. Second, there is no one-
size-fit-all model for different MapReduce jobs, and even dif-
ferent configurations are needed for different execution
phases or input sizes. In a cloud environment, task configura-
tions should also be changed in response to the changes in
multi-tenancy interferences. Finally, most MapReduce imple-
mentations use fixed task configurations that are set during
job initializations [10]. Adaptive task tuning requires new
mechanisms for on-the-fly task reconfiguration.

We present Ant, a self-adaptive tuning approach for task
configuration in heterogeneous environments. Ant monitors
task execution in large MapReduce jobs, which comprise
multiple waves of tasks and optimizes task configurations
as job execution progresses. It clusters worker nodes (either
physical or virtual nodes) into groups according to their
hardware configurations or the estimated capability based
on interference statistics. For each node group, Ant launches
tasks with different configurations and considers the ones
that complete sooner as good settings. To accelerate tuning
speed and avoid trapping in local optimum, Ant uses genetic
functions crossover and mutation to generate task configura-
tions for the next wave from the two best performing tasks in
a group. We implement Ant in Hadoop, the popular open
source implementation ofMapReduce, and perform compre-
hensive evaluations with representative MapReduce bench-
mark applications. Experimental results on a physical
cluster with three types of machines show that Ant improves
the average job completion time (JCT) by 31, 20, and 14 per-
cent compared to stock Hadoop (Stock), customizedHadoop
with industry recommendations (Heuristic), and a profiling-
based configuration approach (Starfish), respectively. Our
results also show that although Ant is not quite effective for
small jobs with only a few waves of tasks, it can significantly
improve the performance of large jobs. Experiments with
Microsoft’s MapReduce workload, which consist of 10 per-
cent large jobs, demonstrate that Ant is able to reduce the
overall workload completion time by 12.5 and 8 percent com-
pared to heuristic- and profiling-based approaches.

A preliminary version of the paper appeared in [11]. In
this manuscript, we have extended Ant to virtual MapRe-
duce clusters in multi-tenancy private cloud environments.
Specifically, Ant characterizes a virtual node based on two
measured performance statistics: I/O rate and CPU steal
time. We consider two representative interference scenarios
in the cloud: stable interference and dynamic interference.
Experimental results on virtual clusters with varying inter-
ferences show that Ant improves the average job comple-
tion time by 20, 15, and 11 percent compared to Stock,
Heuristic and Starfish, respectively.

The rest of this paper is organized as follows. Section 2
gives motivations on improvement of MapReduce configu-
ration framework. Section 3 describes the design of Ant.

Section 4 presents the details of the proposed self-tuning
algorithm. Section 5 introduces moving Ant into the cloud.
Section 6 gives Ant implementation details. Section 7
presents the experimental results and analysis on a physical
cluster. Section 8 presents the experimental results and anal-
ysis on a virtual cluster. Section 9 reviews related work.
Section 10 concludes the paper.

2 MOTIVATIONS

2.1 Background

MapReduce is a distributed parallel programming model
originally designed for processing a large volume of data in
a homogeneous environment. Based on the default Hadoop
framework, a large number of parameters need to be set
before a job can run in the cluster. These parameters control
the behaviors of jobs during execution, including their mem-
ory allocation, level of concurrency, I/O optimization, and
the usage of network bandwidth. As shown in Fig. 1, slave
nodes load configurations from the master node where the
parameters are configured manually. By design, tasks
belonging to the same job share the same configuration.

In Hadoop, there are more than 190 configuration param-
eters, which determine the settings of the Hadoop cluster,
describe a MapReduce job to the Hadoop framework, and
optimize task execution [10]. Cluster-level parameters spec-
ify the organization of a Hadoop cluster and some long-term
static settings. Changes to such parameters require rebooting
the cluster to take effect. Job-level parameters determine the
overall execution settings, such as input format, number of
map/reduce tasks, and failure handling. These parameters
are relatively easier to tune and have uniform effect on all
tasks even in a heterogeneous environment. Task-level
parameters control the fine-grained task execution on indi-
vidual nodes and can possibly be changed independently
and on-the-fly at runtime. Parameter tuning at the task level
opens up opportunities for improving performance in het-
erogeneous environments and is our focus in this work.

Hadoop installations pre-set the configuration parame-
ters to default values assuming a reasonably sized cluster
and typical MapReduce jobs. These parameters should be
specifically tuned for a target cluster and individual jobs to
achieve the best performance. However, there is very lim-
ited information on how the optimal settings can be deter-
mined. There exist rule of thumb recommendations from
industry leaders (e.g., Cloudera [12] and MapR [13]) as well
as academic studies [6], [8]. These approaches can not be

Fig. 1. The Hadoop framework.

CHENG ETAL.: IMPROVING PERFORMANCE OF HETEROGENEOUS MAPREDUCE CLUSTERS WITH ADAPTIVE TASK TUNING 775

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

universally applied to a wide range of applications or het-
erogeneous environments. In this work, we develop an
online self-tuning approach for task-level configuration.
Next, we provide motivating examples to show the neces-
sity of configuration tuning for heterogeneous workloads
and hardware platforms.

2.2 Motivating Examples

We created a heterogeneous Hadoop cluster composed of
three types of machines listed in Table 1. Three MapReduce
applications from the PUMA benchmark [14], i.e., Word-
Count, Terasort and Grep, each with 300 GB input data, were
run on the cluster. We configured each slave node with four
map slots and two reduce slots, and HDFS block size was
set to 256 MB. The heap size mapred.child.java.opts

was set to 1 GB and other parameters were set to the default
values. We measured the map task completion time in two
different scenarios—heterogeneous workload on homoge-
neous hardware and homogeneous workload on heteroge-
neous hardware. We show that the heterogeneity either in
the workload or hardware makes the determination of the
optimal task configuration difficult.

Fig. 2a shows the average map completion times of the
three heterogeneous benchmarks on a homogeneous cluster
only consisting of the T110 machines. The completion times
changed as we altered the values of parameter io.sort.

record.percent. The figure shows that wordcount, tera-
sort, and grep achieved their minimum completion times
when the parameter was set to 0.4, 0.2, and 0.6, respectively.
Fig. 2b shows the performance of wordcount on machines
with different hardware configurations. Map completion
times varied as we changed the value of parameter io.

sort.mb. The figure suggests that uniform task configura-
tions do not lead to the optimal performance in a heteroge-
neous environment. For example, map tasks achieved the
best performance on the Atommachine when the parameter
was set to 125 while the optimal completion time on the
T420 machine was due to the parameter being set to 275.

Summary.Wehave shown that the performance ofHadoop
applications can be substantially improved by tuning task-
level parameters for heterogeneousworkloads and platforms.

However, parameter optimization is an error-prone process
involving complex interplays among the job, the Hadoop
framework and the architecture of the cluster. Furthermore,
manual tuning still remains difficult due to the large parame-
ter search space. As many MapReduce jobs are recurring or
have multiple waves of task execution, it is possible to learn
the best task configurations based on the feedback of previous
runs. These observations motivated us to develop a task self-
tuning approach to automatically configure parameters for
variousHadoop jobs and platforms in an onlinemanner.

3 ANT DESIGN AND ASSUMPTIONS

3.1 Architecture

Ant is a self-tuning approach for multi-wave MapReduce
applications, inwhich job executions consist of several rounds
of map and reduce tasks. Unlike traditional MapReduce
implementations, Ant centers on two key designs: (1) tasks
belonging to the same job run with different configurations
matching the capabilities of the hosting machines; (2) the con-
figurations of individual tasks dynamically change to search
for the optimal settings. Ant first spawns tasks with random
configurations and executes them in parallel. Upon task com-
pletion, Ant collects task runtimes and adaptively adjusts task
settings according to the best-performing tasks. After several
rounds of tuning, task configurations on different nodes con-
verge to the optimal settings. Since task tuning startswith ran-
dom settings and improves with job execution, ant does not
require any priori knowledge of MapReduce jobs and is
model independent. Fig. 3 shows the architecture of Ant.

� Self-tuning optimizer uses a genetic algorithm (GA)-
based approach to generate task configurations
based on the feedback reported by the task analyzer.
Settings that are top-ranked by the task analyzer are
used to re-produce the optimized configurations.

� Task analyzer uses a fitness (utility) function to evalu-
ate the performance of individual tasks due to differ-
ent configurations. The fitness function takes into
account task completion time as well as other perfor-
mance critical execution statistics.

Ant operates as follows. When a job is submitted to the
JobTracker, the configuration optimizer generates a set
of parameters randomly in a reasonable range to initialize
the task-level configuration. Then the JobTracker sends
the randomly initialized tasks to their respective Task-

Trackers. The steps of task tuning correspond to the
multiple waves of tasks execution. Upon completing a
wave, the task analyzer residing in the JobTracker rec-
ommends good configurations to the configuration

TABLE 1
Multiple Machine Types in the Cluster

Machine model CPU Memory Disk

Supermicro Atom 4*2.0 GHz 8 GB 1 TB
PowerEdge T110 8*3.2 GHz 16 GB 1 TB
PowerEdge T420 24*1.9 GHz 32 GB 1 TB

Fig. 2. The optimal task configuration changes with workloads and
platforms.

Fig. 3. The architecture of Ant.

776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

optimizer for the next wave of execution. This process is
repeated until the job completes.

3.2 Assumptions

Our findings that uniform task configurations lead to sub-
optimal performance in a heterogeneous environment moti-
vated the design of Ant, a self-tuning approach that allows
differentiated task settings in the same job. The effectiveness
of Ant relies on two assumptions—substantial performance
improvement can be achieved via task configurations and
theMapReduce jobs are long running ones (e.g., withmultiple
waves) which allow for task reconfiguration and performance
optimization. There are two levels of heterogeneity that can
affect task performance, i.e., task-level data skewness and
machine-level varying capabilities. Although due to data
skew some tasks inherently take longer to finish, Ant assumes
that the majority of tasks have uniform completion time with
identical configurations. Ant focuses on improving perfor-
mance for average tasks by matching task configurations to
the actual hardware capabilities. To address hardware hetero-
geneity, Ant groups nodes with similar hardware configura-
tions or capabilities together and compares parallel executing
tasks to determine the optimal configurations for the node
group. However, task skew and varying hardware capabili-
ties due to interferences in multi-tenant clouds can possibly
impede getting good task configurations.

4 SELF-ADAPTIVE TUNING

Ant identifies good configurations by comparing the perfor-
mance of parallel executing tasks on the nodes with similar
processing capabilities in a self-tuning manner. Due to the
multi-wave task execution in many MapReduce jobs, Ant is

able to continuously improve performance by adapting task
configurations. In this section, we first describe how Ant
forms self-tuning task groups in which different configura-
tions can be compared. We then discuss the set of parame-
ters Ant optimizes and the utility function Ant uses to
evaluate the goodness of parameters. Finally, we present
the design of a genetic algorithm-based self-tuning
approach and a strategy to accelerate the tuning speed.

4.1 Forming Self-Tuning Groups

We begin with describing Ant’s workflow in a homoge-
neous cluster and discuss how to form homogeneous sub-
clusters in a heterogeneous cluster.

Homogeneous Cluster. In a homogeneous cluster, all nodes
have the same processing capability. Thus, Ant considers
the whole Hadoop cluster as a self-tuning group. Each node
in the Hadoop cluster is configured with a predefined num-
ber of map and reduce slots. If the number of tasks (e.g.,
mappers) exceeds the available slots in the cluster (e.g., map
slots), execution proceeds in multiple waves. Fig. 4 shows
the multi-wave task self-tuning process in a homogeneous
cluster. Ant starts multiple tasks with different configura-
tions concurrently in the self-tuning group and reproduces
new configurations based on the feedback of completed
tasks. We frame the tuning process as an evolution of con-
figurations, in which each wave of execution refers to one
configuration generation. The reproduction of generations
is directed by a genetic algorithm which ensures that the
good configurations in prior generations are preserved in
new generations.

Heterogeneous Cluster. In a heterogeneous cluster, as
shown in Fig. 5, Ant divides nodes into a number of homoge-
neous subclusters based on their hardware configurations.
Hardware information can be collected by the JobTracker
on themaster node using the heartbeat connection. Ant treats
each subcluster as an homogeneous cluster and indepen-
dently applies the self-tuning algorithm to them. The out-
comes of the self-tuning process are significantly improved
task-level configurations, one for each subcluster. Since each
subcluster has different processing capability, the optimized
task configurations can be quite different across subclusters.

4.2 Task-Level Parameters

Task-level parameters control the behavior of task execu-
tion, which is critical to the Hadoop. Previous studies have
shown that a small set of parameters are critical to Hadoop
performance. Thus, as shown in Table 2, we choose task-
level parameters which have significant performance
impact as the candidates for tuning. We further shrink the
initial searching space of these parameters to a reasonable

Fig. 4. Task self-tuning process in Ant.

Fig. 5. Ant on a heterogeneous cluster.

TABLE 2
Task-Level Parameters and Search Space

Task-level parameters Search space Symbol

io.sort.factor {1, 300} g1
io.sort.mb {100, 500} g2
io.sort.record.percent {0.05, 0.8} g3
io.sort.spill.percent {0.1, 0.9} g4
io.file.buffer.size {4 K, 64 K} g5
mapred.child.java.opts {200, 500} g6

CHENG ETAL.: IMPROVING PERFORMANCE OF HETEROGENEOUS MAPREDUCE CLUSTERS WITH ADAPTIVE TASK TUNING 777

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

range in order to accelerate the search speed. This simple
approach allows us to cut the search time down from a few
hours to a few minutes.

4.3 Evaluating Task Configurations

To compare the performance of different task configurations,
Ant requires a quantitative metric to rank configurations. As
the goal of task tuning is to minimize job execution time, task
completion time (TCT) is an intuitive metric to evaluate per-
formance. However, TCT itself is not a reliable metric to eval-
uate task configurations. A longer task completion time does
not necessarily indicate a worse configuration as some tasks
are inherently longer to complete. For example, due to data
skew, tasks that have expensive records in their input files
can take more than five times longer to complete. Thus, we
combine TCT with another performance metric to construct a
utility function (or a fitness function in genetic algorithms).
We found that most task mis-configurations are related to
task memory allocations and incur excessive data spill opera-
tions. If either of the kvbuffer or the metadata buffer fills
up, a map task spills intermediate data to local disks. The
spills could lead to three times more I/O operations [12], [15].
Thus, Ant is designed to simultaneously minimize task com-
pletion time and the number of spills.

We define the fitness function of a configuration candi-

date (Ci) as: fðCiÞ ¼ 1
TCT2ðCiÞ�ð#spillsÞ, where TCT is the task

completion time and #spills is the number of spill opera-
tions. Since majority of tasks have little or no data skew, we
give more weight to TCT in the formulation of the fitness
function. Task configurations with high fitness values will
be favored in the tuning process. Note that the fitness func-
tion does not address the issue of data skew due to non-
uniform record distributions in task inputs. We believe that
configurations optimized for a task with inherently more
data can be even harmful to normal tasks as allocating more
memory to normal tasks incurs resource waste.

4.4 Task Self-Tuning

Ant deployes an online self-tuning approach based on genetic
algorithm to search the optimal task-level configurations. We
consider MapReduce jobs composed of multiple waves of
map tasks. The performance of individual task T is deter-
mined by its parameter set C. A set candidate Ci consisting of
a number of selected parameters (refer to genes in GA),
denoted as Ci ¼ ½g1; g2; . . . ; gn�, represents a task configura-
tion set, where n is the number of parameters. Each element g
represents a task-level parameter as shown in Table 2.

Reproduction Process. Ant begins with an initial configura-
tion of randomly generated candidates for the task assign-
ment. After that, it evolves individual task configuration to
breed good solutions during each interval by using the
genetic reproduction operations. As shown in Algorithm 1,
Ant first evaluates the fitness of all completed tasks in the last
control interval. Note that M represents the total number of
the completed tasks in the last control interval. When there is
any available slot in the cluster, it selects two configuration
candidates as the evolving parents. Ant generates the new
generation configuration candidates by using the proposed
genetic reproduction operations. Finally, it assigns the task
with the new generated configuration set to the available slot.

Algorithm 1. Ant Task Self-Tuning Algorithm

1: /*Evaluate the fitness of each completed task*/
2: fðC1Þ; . . . ; fðCiÞ; . . . ; fðCMÞ
3: repeat
4: if Any slot is available then
5: Select two configuration candidates as parents;
6: Do Crossover and Mutation operations;
7: Use the obtained new generation Cnew to assign the task

to the available slot;
8: end if
9: until the running job completed.

There are many variations of the reproduction algorithm
obtained by altering the selection, crossover, and mutation
operators as shown in Fig. 6. The selection determines
which two parents (task configuration sets) in the last gener-
ation will have offsprings in the next generation. The cross-
over operator determines how genes are exchanged
between the parents to create those offsprings. The muta-
tion allows for random alteration of genes. While the selec-
tion and crossover operators tend to increase the quality of
the task execution in the new generation and force conver-
gence, mutation tends to bring in divergence.

Parents Selection. A popular selection approach is the Rou-
lette Wheel (RW) mechanism. In this method, if fitness fðCiÞ
is the fitness of completed task performance in the candidate

population, its probability of being selected is Pi ¼ fðCiÞPM

i¼1 fðCiÞ
,

where M is the number of tasks completed in the previous
interval. This allows candidates with good fitness values to
have a higher probability of being selected as parents. The
selectionmodule ensures reproduction ofmore highly fit can-
didates compared to the number of less fit candidates.

Crossover. A crossover function is used to cut the
sequence of elements from two chosen candidates (parents)
and swap them to produce two new candidates (children).
As crossover operation is crucial to the success of Ant and it
is also problem dependent, an exclusive crossover operation
is employed for each individual. We implement relative fit-
ness crossover [16] instead of absolute fitness crossover
operation, because it moderates the selection pressure and
controls the rate of convergence. Crossover operation is
exercised on configuration candidates with a probability,
known as crossover probability (Pc).

Mutation. The mutation function aims to avoid trapping in
the local optimum by randomly mutating an element with a
given probability. Instead of performing gene-by-gene muta-
tion at each generation, a random number r is generated for
each individual. If r is larger than the mutation probability
(Pm), the particular individual undergoes the mutation pro-
cess. Otherwise, the mutation operation involves replacing a

Fig. 6. Reproduction operations.

778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

randomly chosen parameter with a new value generated ran-
domly in its search space. This process prevents premature
convergence of the population and helps Ant sample the
entire solution space.

4.5 Aggressive Selection

The popular Roulette Wheel selection mechanism has a
higher probability of selecting good candidates to be
parents than bad ones. However, this approach still results
in too many task evaluations, which in turn reduces the
speed of convergence. Therefore, our selection procedure is
more aggressive and deterministically selects good candi-
dates to be parents. We use the following two strategies to
accelerate the task-level parameter tuning.

Elitist Strategy. We found that good candidates are more
likely to produce good offsprings. In this work, an elitist
strategy is developed similar to the proposed GAs in
study [16]. Elitism provides a means for reducing genetic
drift by ensuring that the best candidate is allowed to copy
their attributes to the next generation. Since elitism can
increase the selection pressure by preventing the loss of low
salience genes of candidates due to deficient selection pres-
sure, it improves the performance with regard to optimality
and convergence. However, the elitism rate should be
adjusted suitably and accurately because high selection pres-
sure may lead to premature convergence. The best candidate
with highest fitness value in the previous generation will be
preserved as one of the parents in the next generation.

Algorithm 2. Aggressive Selection Algorithm

1: /*Select the best configuration candidate Cbest*/
2: best ¼ argmax

i
½fðCiÞ�; i 2 f1; . . . ;Mg

3: /*Select another configuration set from the candidates with
fitness scores that exceed the mean by WR*/

4: Avgf ¼ 1
M

PM
i¼1 fðCiÞ

5: if fðCiÞ > Avgf then
6: Select CWR ¼ fðCiÞwith possibility Pi;
7: end if
8: Use Cbest and CWR as parents.

Inferior Strategy. We also found that it is unlikely for two
low fitness candidates to produce an offspring with high fit-
ness. This is due to the fact that bad performance is often
caused by a few key parameters and these bad settings con-
tinue to be inherited in real clusters. For instance, for an
application that is both CPU and shuffle-intensive in a clus-
ter with excessive I/O bandwidth and limited CPU resour-
ces, enabling compression of map outputs would stress the
CPU and degrade application performance, regardless of
others. The selection method should eliminate this configu-
ration quickly. In order to quickly eliminate poor candi-
dates, we calculate the mean fitness of the completed tasks
for each generation and only select parents with fitness
scores that exceed the mean.

Aggressive Selection Algorithm. Based on the above two
aggressive selection strategies, the parents selection of the
self-tuning reproduction is operated by an integrated selec-
tion algorithm. As shown in Algorithm 2, Ant firstly selects
the best configuration candidate with the highest fitness in
the last interval as one of the reproduction parents. Then it
selects another configuration set from the candidates with

fitness scores that exceed the mean by applying the Roulette
Wheel approach. Finally, Ant generates the new generation
configuration candidates by using the two selected candi-
dates (i.e., Cbest and CWR) as the reproduction parents.

Furthermore, the aggressive selection strategies also
reduce the impact of task skews during the tuning process.
Long tasks due to data skews may add noises in the pro-
posed GA-based task tuning. Taking the advantages of the
aggressive selection, only the best configurations are possi-
bly used to generate new configurations. It is unlikely that
the tasks with skews would be selected as reproduction can-
didates. Thus, Ant would find the best configurations for
the majority of tasks.

5 MOVING ANT INTO THE CLOUD

Cloud computing offers users the ability to access large
pools of computational and storage resources on demand.
Developers by using the cloud computing paradigm are
enabled to perform parallel data processing in a distributed
and scalable environment with affordable cost and reason-
able time. In particular, MapReduce deployment in the
cloud allows enterprises to cost-effectively analyze large
amounts of data without creating large infrastructures of
their own [17]. Using virtual machines (VMs) and storage
hosted by the cloud, enterprises can simply create virtual
MapReduce clusters to analyze their data. However, tuning
the jobs hosted in virtual MapReduce clusters is significant
challenge to users. This is due to the fact that even the vir-
tual node configured with the same virtual hardware could
have varying capacity due to interferences from co-located
users [18], [19]. When running Hadoop in a virtual cluster,
finding nodes with the similar hardware capability is more
challenging and complex than that in a physical cluster.

For moving Ant into virtual MapReduce clusters, it is
apparently inaccurate to divide nodes into a number of
homogeneous subclusters based on their static hardware
configurations. Cloud offers elasticity to slice large, underu-
tilized physical servers into smaller, parallel virtual
machines, enabling diverse applications to run in isolated
environments on a shared hardware platform. As a result,
such a cloud environment leads to various interferences
among the different applications. In this work, we focus on
two representative interference scenarios in the cloud: sta-
ble interference and dynamic interference. We extend Ant
to virtual MapReduce clusters in the cloud environments.

� In the first scenario of static interference, Ant only
classifies VMs at the beginning of the adaptation pro-
cess when interferences are relatively stable during
the job execution process.

� In the second scenario of dynamic interference, the
background interference could change and the per-
formance of virtual nodes change over time. Thus, a
re-clustering of the virtual nodes is needed to form
new tuning groups. Ant is adapt to the variations of
VM performance by periodically performing re-
grouping if significant performance changes in VMs
are detected.

In the following, we describe how to classify a virtual
MapReduce cluster into a number of homogeneous subclus-
ters in the above two scenarios.

CHENG ETAL.: IMPROVING PERFORMANCE OF HETEROGENEOUS MAPREDUCE CLUSTERS WITH ADAPTIVE TASK TUNING 779

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

5.1 Stable Interference Scenario

Ant estimates the actual capabilities of virtual nodes based
on low-level resource utilizations of virtual resources. Previ-
ous study found that MapReduce jobs are mostly bottle-
necked by the slow processing of a large amount of
data [20]. Excessive I/O rate and a lack of CPU allocation
are signs of slow processing. Ant characterizes a virtual
node based on two measured performance statistics: I/O
rate and CPU steal time. Both statistics can be measured at
the TaskTracker of individual nodes.

Antmonitors the number of data byteswritten to disk dur-
ing the execution of a task. Since there is little data reuse in
MapReduce jobs, the volume of writes is a good indicator of
I/O access rate and memory demand. When the in-memory
buffer, controlled by parameter mapred.job.shuffle.

merge.percent, runs out or reaches the threshold number
of map outputs mapred.inmem.merge.threshold, it is
merged and spilled to disks. The spilled records are written to
disks, which include both map and reduce spills. Task-
Tracker automatically records the data writing size and
spilling duration of each task.We calculate the I/O access rate
of individual nodes based on the data spilling operations.

The CPU steal time is the amount of time that the virtual
node is ready to run but failed to obtain CPU cycles because
the hypervisor is serving other users. It reflects the actual
CPU time allocated to the virtual node and can effectively
calibrate the configuration of virtual hardware according to
the experienced interferences. We record the real-time CPU
steal time by running the Linux top command on each vir-
tual machine. TaskTracker reports the information to the
master node in the cluster by the heartbeat connection.

Ant uses the k-means clustering algorithm to classify vir-
tual nodes into configuration groups. Formally, given a set of
VMs (M1;M2; . . . ;Mm), where each observation is a two-
dimensional real vector (i.e., I/O rate and CPU steal time), k-
means clustering aims to partition the m observations into
kð� nÞ sets S ¼ S1; S2; . . . ; Sk so as to minimize the within-
group sumof squares:

arg min
Xk
i¼1

X
M2Sk

kM � mik2: (1)

Here mi is the mean of points in Si. kM � mik2 is a chosen
distance(intra) measure between a data point Mm and the
group centre mi. It is is an indicator of the distance of the
mth VM from its respective group centers.

5.2 Dynamic Interference Scenario

The determination of k value in the proposed k-means clas-
sification approach is more difficult and complex when Ant
is applied in a highly dynamic cloud environment. The real
capacity of virtual nodes in the cluster will change over
time as the background interference changes. Furthermore,
virtual nodes could be migrated among different physical
host machines in the cloud, which also has significant
impact on the performance of virtual nodes. These observa-
tions motivate us to periodically perform re-grouping of the
virtual nodes to form new tuning groups. Accordingly, we
have to decide the number of homogeneous subclusters and
the frequency of re-grouping the subclusters in a dynamic
interference environment.

5.2.1 K Value Selection

As designed, the algorithm is not capable of determining the
appropriate number of subclusters and it depends upon the
user to identify this in advance. However, it is very difficult
for Ant to set the number of groups in the dynamic interfer-
ence scenario. In order to achieve the desired performance of
Ant, it is necessary to find the number of groups for dynamic
interferences among VMs on the runtime. Fixing the number
of groups in a virtual cloud clustermay lead to poor quality of
grouping and performance degradation. Thus, we propose a
modified k-means method to find the number of groups
based on the quality of the grouping output on the fly. It relies
on the following two performance metrics to qualify the
grouping of similar VMs in a virtualMapReduce cluster.

� inter is used to measure the separation of homoge-
neous VM groups. The term is the sum of the distan-
ces between the group centroids, which is defined
as: inter ¼P kmi � mxk2; i; x 2 k.

� intra is used to measure the compactness of individ-
ual homogeneous VM groups. Here, we use the stan-
dard deviation as intra to evaluate the compactness
of the data points in each group of VMs. It is defined

as: intra ¼
ffi
1
n

Pn
i¼1ðMi � miÞ2

q
.

As shown in Algorithm 3, users have the flexibility either
to fix the number of groups or enter the minimum number
of groups. In the former case, it works in the same way as
the traditional k-means algorithm does. The value of k is
empirically determined based on the historical workload
records and MapReduce multi-wave behavior analysis. In
the latter case, it lets the algorithm to compute the new
number of groups by incrementing the group counter by
one in each iteration until it satisfies the validity of grouping
quality threshold, referring to line 14 in Algorithm 3.

Algorithm 3. Dynamic Grouping of VMs

1: Inputs: k: number of groups (initialize k = 2);M : number of
VMs in a virtual cluster.

2: Randomly choose k VMs in the cluster, as k groups;
3: repeat
4: if any other VM is not in a group then;
5: assign the VM to the group according to Eq. (1);
6: update the mean of the group;
7: end if
8: until the minimummean of the group is achieved;
9: if the number of groups is fixed then
10: goto Output
11: end if
12: compute: inter ¼P kmi � mxk2; i; x 2 k

13: compute: intra ¼
ffi
1
n

Pn
i¼1ðMi � miÞ2

q

14: if intrak < intrak�1 and interk > interk�1 then
15: k kþ 1 and goto line 3 repeat;
16: end if
17: Output: a set of k groups.

5.2.2 Dynamic Re-Grouping

Since multi-tenancy interferences in the cloud are usually
time-varying, grouping of homogeneous virtual nodes
should be executed by k-means approach periodically.

780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

Intuitively, the frequency of the re-grouping is determined
by two factors: the dynamics of multi-tenancy interference
in the cloud and the size of the virtual MapReduce cluster.

� If the multi-tenancy interferences change frequently,
re-grouping should be more frequent correspond-
ingly so as to capture dynamic capacity changes of
the virtual nodes.

� If the size of the virtual cluster is small, re-grouping
should be less frequent. This is due to there is certain
amount of time to find favorable task configurations
after each re-grouping adjustment is done, which
may weight out the benefit of re-grouping. On the
contrary, re-grouping needs to be more frequent
when the size of the virtual cluster is large.

Based on the above analysis, we formally formulate the
dynamic capacity change of the virtual nodes based on the
two performance metrics (i.e., inter and intra) as

DynamicðtÞ ¼ intraðtÞ
intraðt� 1Þ �

interðt� 1Þ
interðtÞ : (2)

Either the increase of intra or the decrease of intermeans the
dynamic capacity changes of VMs become significant. The
growth of intra means the compactness of individual homo-
geneous VM groups becomes relaxed. inter reduction means
the separation of homogeneous VMgroups becomes unstable
and regrouping becomes necessary. We periodically monitor
the two performance metrics to reflect the interference in the
cloud. Here, t is the interval to evaluate the dynamic capacity
changes.We empirically set the value of t to oneminute in the
experiment. It is a tradeoff between the average task comple-
tion time and the fluctuation of interference in the cloud.

We formally design the dynamic re-grouping interval
selection process as shown in Algorithm 4. The re-grouping
interval (Tn) is initialized to 10 minutes at the beginning. It is
then dynamically adjusted at runtime based on the dynamic
capacity changes of the virtual nodes. As the dynamic
increases, the re-grouping interval decreases, referring to line
4 in Algorithm 4. The item Avgt2TnDynamicðtÞ represents the
average dynamics during the previous re-grouping interval
Tn. It aims to mitigate the impact of time-varying dynamic
interference in the cloud.

Algorithm 4. Dynamic Re-Grouping Interval

1: Inputs: Tn: the interval of nth re-grouping (initialize T1 = 10
minutes);

2: repeat
3: Collect statistics of inter and intra periodically;
4: Compute at the end of Tn: Tnþ1 ¼ Tn

Avgt2TnDynamicðtÞ according
to Eq. (2);

5: until the job is completed;
6: Output:New re-grouping interval Tnþ1.

6 IMPLEMENTATION

Hadoop Modification. We implemented Ant by modifying
classes JobTracker, TaskTracker and LaunchTask-

Action based on Hadoop version 1.0.3. We added a new
interface taskConf, which is used to specify the configura-
tion file of individual tasks while assigning them to slave

nodes. Each set of task-level parameter set is tagged with its
corresponding AttemptTaskID. Additionally, we added
another new interface Optimizer to implement the GA
optimization. During job execution, we created a method
taskAnalyzer to collect the status of each completed task
by using TaskCounter and TaskReport.

Ant Execution Process. At slave nodes, once a Task-

Tracker gets task execution commands from the Task-

Scheduler by calling LaunchTaskAction, it requires
task executors to accept a launchTask() action from a
local TaskTracker. Ant uses the launchTask() RPC con-
nection to pass on the task-level configuration file descrip-
tion (i.e., taskConf), which is originally supported by the
Hadoop. Ant creates a directory in the local file system to
store the per-task configuration data for map/reduce tasks
at TaskTracker. The directory is under the task working
directory, and is tagged with AttemptTaskID which is
obtained from JobTracker. Therefore, tasks can load their
specified configuration items by accessing their task local
file systems while initializing individual tasks by Locali-

zetask(). Then after task localization, it kicks off a process
to start a MapTask or ReduceTask thread to execute user-
defined map and reduce functions.

Algorithm Implementation. We implemented the self-tuning
algorithm to generate the configuration sets for the new gen-
eration tasks in each control interval (i.e., 5 minutes). The
selection of the control interval is a trade-off between the
parameter searching speed and average task execution time.
If the interval is too long, it will take more time to find good
configurations. If the interval is too short, the task with new
configurations may not complete and no performance feed-
back can be collected. Thus, we choose a control interval of 5
minutes which is approximately two times of the average task
execution time. The mutated value of a parameter is ran-
domly chosen from its search space. Since our aggressive
selection algorithm prunes poor regions, we can use an atypi-
cally high mutation rate (e.g., pm ¼ 0:2) without impacting
convergence. The value of pm is empirically determined. A
cut point is randomly chosen in each parent candidate config-
uration and all parameters beyond that point are swapped
between two parents to produce two children.We empirically
set the crossover probability pc to be 0.7.

7 EVALUATION ON A PHYSICAL CLUSTER

7.1 Experiment Setup

WeevaluateAnt on a physical cluster [11] using threeMapRe-
duce applications from the PUMA benchmark [14] with dif-
ferent input sizes as shown in Table 3, which are widely used
in evaluation of MapReduce performance by previous
works [21]. We compare the performance of Ant with two
other main competitors in practical use: Starfish [6], a job pro-
filing based configuration approach from Duke university,
andRules-of-Thumb1 (Heuristic), another representative heu-
ristic configuration approach from industry leader Clou-
dera [12]. For reference, we normalize the Job Completion
Time achieved by various approaches to the JCT achieved by

1. Cloudera recommends a set of configuration items based on its
industry experience, e.g., io.sort.record.percent is recom-
mended to set as 16

16þavg�record�size, which is based on the average size of

map output records. More rules are available in [12].

CHENG ETAL.: IMPROVING PERFORMANCE OF HETEROGENEOUS MAPREDUCE CLUSTERS WITH ADAPTIVE TASK TUNING 781

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

the Hadoop stock parameter settings. Unless otherwise speci-
fied, we use the stock configuration setting of Hadoop imple-
mentation for the other items that are not listed in the
preliminary study [11]. Note that both Heuristic and Starfish
always maintain identical configuration files for job execu-
tions as described in Section 2. For fairness, the cluster-level
and job-level parameters for all approaches (including the
baseline stock configuration) in the experiments are set to sug-
gested values by the rules of thumb from Cloudera [12]. For
example, we roughly set the value of mapred.reduce.

tasks (the number of reduce tasks of the job) to 0.9 times the
total number of reduce slots in the cluster.

7.2 Effectiveness of Ant

Reducing Job Completion Time. Fig. 7 compares various job
completion times achieved by Heuristic, Starfish and Ant,
respectively. The results demonstrate that all of these con-
figuration approaches improve the job completion times
more or less when compared with the performance
achieved by Hadoop stock parameter setting (Stock). Fig. 7
shows that Ant improves the average job completion time
by 31, 20 and 14 percent compared with Stock, Heuristic
and Starfish on the physical cluster, respectively. This is
due to the fact that Stock, Heuristic and Starfish all rely on a
unified and static task-level parameter setting. Such unified
configuration is apparently inefficient in the heterogeneous
cluster. The results also reveal that Starfish is more effective
than Heuristic on the physical cluster since Starfish benefits
from its job profiling capability. The learning process of
Starfish is more accurate than the experience based tuning
of Heuristic to capture the characteristic of individual jobs.

Impact of Job Size. Fig. 7 shows that Ant slightly reduces the
completion time of small jobs compared with stock Hadoop,
e.g., J1, J4 and J7. In contrast, Ant is more effective for large
jobs, e.g., J3, J6 and J9. This is due to the fact that small jobs
usually have short execution times and the self-tuning process
can not immediately find the optimal configuration solutions.
Thus, such small jobs are not favored byAnt.

Impact of Workload Type. Fig. 7 reveals that Ant reduces the
job completion time of I/O intensive workloads, i.e., Grep

and Terasort, 10 percent more than that of CPU intensive
workloads, i.e., Wordcount. This is due to the fact that Ant
focuses on the task-level I/O operation parameter tuning
and accordingly it affectsmore for I/O intensive workloads.

Overall, Ant achieves consistently better performance
than Heuristic and Starfish do on the physical Hadoop clus-
ter. This is due to its capability of adaptively tuning task-
level parameters while considering various workload pref-
erences and heterogeneous platforms.

7.3 Ant Searching Process

In order to take a close look of Ant searching process, Fig. 8
depicts the parameter io.sort.record.percent search-
ing path from two representative machines (i.e., Atom and
T110) in the physical cluster. Fig. 8a shows that Atom spends
around 20 minutes to find a stable parameter range. In con-
trast, Fig. 8b shows that T110 takes only 7 minutes due to the
fact that there are three T110 machines in the cluster which
provide three times concurrent running tasks of Atom’s.
More parallel task executions mean there are more opportu-
nities to learn the characteristics of the running job on the
cluster in the same time period.

8 EVALUATION ON VIRTUAL CLUSTERS

8.1 Experiment Setup

We built a virtual cluster in our university cloud. VMware
vSphere 5.1 was used for server virtualization. VMware
vSphere module controls the CPU usage limits in MHz allo-
cated to VMs. We created a pool of VMs with different hard-
ware configurations from the virtualized blade server
cluster and run them as Hadoop slave nodes. All VMs ran
Ubuntu Server 12.04 with Linux kernel 3.2. The cluster-level
configurations for Hadoop are the same as those in the
physical cluster (Section 7.1). The number of reduce tasks is
set to 42, which is 0.9 times the number of the available
reduce slots in the cluster.

Stable Interference Scenario. Please refer to the preliminary
study [11] for the effectiveness of Ant with stable
interference.

TABLE 3
The Characteristics of Benchmark Applications Used in Our Experiments

Category Type Label Input size (GB) Input data # Maps # Reduces

Wordcount CPU intensive J1/J2/J3 100/300/900 Wikipedia 400/1,200/3,600 14/ 14/ 14
Grep I/O intensive J4/J5/J6 100/300/900 Wikipedia 400/1,200/3,600 14/ 14/ 14
Terasort I/O intensive J7/J8/J9 100/300/900 TeraGen 400/1,200/3,600 14/ 14/ 14

Fig. 7. Job completion time on the physical cluster. Fig. 8. Task-level parameter search process.

782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

Dynamic Interference Scenario. In the virtual cluster there
are 24 VMs, each with 2 vCPU, 4 GB RAM and 80 GB hard
disk space, which are hosted on blade servers in our cloud.
Unlike the stable interference scenario, we do not run any
specific applications in the cloud as the dynamic interfer-
ence producer. Instead, there are various applications (e.g.,
scientific computations and multi-tier Web applications)
hosted in our university cloud over time. These different
type and time-varying applications play the role of dynamic
interference producer in the cloud environment. As shown
in Fig. 9, we record the cluster level CPU utilization to dem-
onstrate the interference in the cloud. We set the initialized
value of k to 2 in Algorithm 3 and then dynamically divide
the virtual cluster into a few subclusters by using the modi-
fied k-means clustering approach. The re-grouping interval
is dynamically adjusted based on the Algorithm 4 so that
the grouping of virtual nodes is updated dynamically to
capture the interference changes in the cloud.

We firstly demonstrate the performance improvement
achieved by Ant on the virtual cluster with dynamic inter-
ferences. We then evaluate the effectiveness of the proposed
re-grouping approach in the dynamic interference environ-
ment. Finally, we analyze the effectiveness of the dynamic
re-grouping interval selection.

8.2 Effectiveness of Ant under Dynamic
Interference

Fig. 10 compares various job completion times achieved by
Heuristic, Starfish and Ant in the cloud with dynamic inter-
ference, respectively. Fig. 10 demonstrates that all of these
configuration approaches improve the job completion time

compared with that achieved by stock Hadoop parameter
setting approach (Stock). The result shows that Ant
improves the average job completion time by 20, 15 and 11
percent compared with Stock, Heuristic and Starfish on the
physical cluster, respectively. As described in the physical
cluster scenario, Stock, Heuristic and Starfish all rely on a
unified and static task-level parameter setting. Such unified
configurations are apparently inefficient in a virtual cluster
with various interferences. In the cloud environment, task
configurations should be changed in response to the
changes of interferences. The results also reveal that Heuris-
tic is more effective than Starfish on the virtual cluster.
Although the learning based Starfish is more accurate than
the experience based Heuristic in the physical cluster, it fails
to capture the characteristic of various dynamic interfer-
ences in the cloud environment.

Fig. 11 shows the detailed impact on task-level perfor-
mance while applying Ant in the cloud environment.
Fig. 11a depicts the breakdown of job completion time of
the three jobs (i.e., J3, J6 and J9) used in the experiment. It
reveals that Wordcount is map-intensive while Terasort and
Grep are shuffle & reduce-intensive. Fig. 11b shows the
average task completions time of map tasks and reduce
tasks in the experiment. The result demonstrates that map
tasks are relatively small compared to reduce tasks. This is
due to the fact that the number of reduce tasks is configured
to 0.9 times of the total number of reduce slots in the cluster.
It aims to complete the execution of reduce tasks in one
waive to avoid the overhead caused by data shuffle.

Fig. 12 shows the job completion time improvement
achieved by Genetic with/without clustering, Starfish with/
without clustering, and Heuristic with/without clustering
approaches in a single heterogeneous cluster. The results
demonstrate approaches with clustering achieve better per-
formance improvement than approaches without clustering
in heterogeneous environments. We find that Genetic with
clustering achieves slight performance improvement com-
pared to the other two approaches. This is due to the fact that

Fig. 9. Dynamic interference in the cloud.

Fig. 10. Job completion time on the virtual cluster with dynamic perfor-
mance interference.

Fig. 11. Impact on task-level performance.

Fig. 12. Comparsion by applying different tuning approaches in a hetero-
geneous cluster.

CHENG ETAL.: IMPROVING PERFORMANCE OF HETEROGENEOUS MAPREDUCE CLUSTERS WITH ADAPTIVE TASK TUNING 783

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

the main contribution of Ant relies on the dynamic clustering
and task-level adaptive configuration in heterogeneous
environments.

8.3 Effectiveness of Subcluster Re-Grouping

Fig. 13a compares the job completion time improvement
achieved by Ant with the dynamic subcluster re-grouping
and static grouping capability. It shows that Ant with the
dynamic re-grouping capability can outperform Ant with
static grouping capability by almost 100 percent in terms of
the job completion time improvement. This is due to the
benefit of re-grouping virtual nodes into a number of homo-
geneous subclusters so as to mitigate the impact of interfer-
ence on task tuning. In the approach of Ant without re-
grouping, it uses a static number of groups that is similar
with the stable interference scenario. Ant only groups the
virtual nodes at the beginning of the task tuning process in
the dynamic interference environment. Thus, Ant without
subcluster re-grouping capability cannot capture time-vary-
ing interference in the cloud. Fig. 13b shows the impact of
the number of groups on the job completion time under the
static grouping approach. We empirically select the static
number of group (i.e., k ¼ 2) for comparison with the
dynamic subcluster re-grouping capability.

Fig. 13c shows that both the number of groups and the
re-grouping interval are dynamically adjusted based on the
time-varying interference in the cloud. Ant periodically col-
lects the dynamic capacity changes of the virtual nodes and
then re-groups virtual nodes according to Algorithms 3
and 4. Fig. 13c depicts the dynamic tuning process of Ant in
a 160-minute time window, which is corresponding to the
time-varying interference scenario as shown in Fig. 9. The
number of groups is initialized as two at the beginning
stage. It is then dynamically tuned based on the dynamic
capacity changes. The result shows that the number of
groups keeps stable at two when the interference is rela-
tively stable, such as in the period between 120th and 160th
minutes. However, the number of groups fluctuates when
the interference changes frequently, such as in the period
around 100th minute.

At the same time, the interval of re-grouping is adap-
tively changed with the interference changes at the runtime.
When the cloud interference fluctuates significantly (e.g.,
90th to 110th minutes), the re-grouping interval becomes
small so that Ant can capture the capacity changes of the
virtual nodes in the cluster. The re-grouping interval is
larger when the interference changes more frequently in the
could. It represents system performance sensitivity of the
interference dynamics in our university cloud.

8.4 Sensitivity of GA Parameter Selection

We change the values of crossover probability and mutation
rate to study their impact on the performance improvement
in terms of job completion time. Fig. 14a shows that the job
completion time initially decreases as the crossover probabil-
ity increases. However, increasing the crossover probability
further leads to performance degradation. This tells that a
very large crossover probability may lead to job completion
time deterioration. Thus, we empirically set the crossover
probability to 0.7 in the experiment. It is a tradeoff between
the search speed and the job completion time improvement.
Fig. 14b shows tuning the mutation rate has the similar phe-
nomenon with the crossover probability in the experiment.
A largemutation rate (e.g., 0.5) leads significant performance
deterioration due to the instability of task-level configura-
tion. Thus, we empirically set the mutation rate to 0.2 with-
out impacting convergence in the experiment.

9 RELATED WORK

Heterogeneous Environment. As heterogeneous hardware is
applied toHadoop clusters, how to improveMapReduce per-
formance in heterogeneous environments attracts much
attention [1], [2], [22], [23]. Ahmad et al. [1] identified key rea-
sons for MapReduce poor performance on heterogeneous
clusters. Accordingly, they proposed an optimization based
approach, Tarazu, to improve MapReuce performance by
communication-aware load balancing. Zaharia et al. [2]
designed a robust MapReduce scheduling algorithm, LATE,
to improve the completion time of MapReduce jobs in a het-
erogeneous environment. They paid little attention to opti-
mizing Hadoop configurations, which has a significant
impact on the performance ofMapReduce jobs, especially in a
heterogeneousHadoop cluster.

Parameter Configuration. Recently, a few studies start to
explore how to optimize Hadoop configurations to imp-
rove job performance. Herodotou et al. [7] proposed several
automatic optimization based approaches for MapReduce
parameter configuration to improve job performance.

Fig. 13. Performance improvement comparison between static grouping and dynamic re-grouping approach.

Fig. 14. Sensitivity of the crossover probability and mutation rate tuning.

784 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

Kambatla et al. [24] presented a Hadoop job provisioning
approach by analyzing and comparing resource consumption
of applications. It aimed to maximize job performance while
minimizing the incurred cost. Lama and Zhou designed
AROMA [8], an approach that automated resource allocation
and configuration of Hadoop parameters for achieving the
performance goals while minimizing the incurred cost. Hero-
dotou et al. proposed Starfish [6], an optimization framework
that hierarchically optimizes from jobs to workflows by
searching for good parameter configurations. These app-
roaches mostly rely on the default Hadoop framework and
configure the parameters by static settings. They are often not
effectivewhen the cluster platform becomes heterogeneous.

MapReduce in the Cloud. Currently, there are several
options for using MapReduce in the cloud environments,
such as using MapReduce as a service, setting up one’s own
MapReduce cluster on cloud instances, or using specialized
cloud MapReduce runtimes that take advantage of cloud
infrastructure services. Guo et al. [25] designed FlexSlot, an
effective yet simple extension to the slot-based Hadoop task
scheduling framework. It adaptively changes the number of
slots on each virtual node to promote efficient usage of
resource pool in cloud environment. Chiang et al. [20] pre-
sented TRACON, a novel task and resource allocation con-
trol framework that mitigated the interference effects from
concurrent data-intensive applications. Ant differentiates
itself from those efforts through its capability of adaptive
task-level tuning to achieve performance optimization.

10 CONCLUSION AND FUTURE WORK

Although a unified design framework, such as MapReduce,
is convenient and easy to use for large-scale parallel
and distributed programming, it ignores the differentiated
needs in the presence of various platforms and workloads.
In this paper, we tackle a practical yet challenging problem
of automatic configuration of large-scale MapReduce work-
loads in heterogeneous environments. We have proposed
and developed a self-adaptive task-level tuning approach,
Ant, that automatically finds the optimal settings for indi-
vidual jobs running on heterogeneous nodes. In Ant, tasks
are customized with different settings to match the capabili-
ties of heterogeneous nodes. It works best for large jobs
with multiple rounds of map task execution. Our experi-
mental results demonstrate that Ant can improve the aver-
age job completion time on a physical cluster by 31, 20, and
14 percent compared to stock Hadoop, customized Hadoop
with industry recommendations, and a profiling-based con-
figuration approach, respectively. Experimental results on
two virtual cloud clusters with varying multi-tenancy inter-
ferences show that Ant improves the average job comple-
tion time by 20, 15, and 11 percent compared to Stock,
Heuristic and Starfish, respectively. Ant can be deployed to
different types of clusters, and thus is flexible and adaptive.

Our method Ant can be extended to other frameworks
such as Spark, though some additional effort is needed. Dif-
ferent fromHadoop, which executes individual tasks in sep-
arate JVMs, Spark uses executors to host multiple tasks on
worker nodes. To extend Ant to Spark, we need to dynami-
cally change executor sizes without restarting a launched
job. Since running Spark on another generic cluster

management middleware, such as YARN, becomes increas-
ingly popular, it is possible to enable malleable executors
using resource containers. As such, Ant can monitor the
completion times of individual tasks and use such informa-
tion as feedback to determine the optimal size of Spark exec-
utors. In the future, we also plan to extend Ant to multi-
tenancy public cloud environments such as Azure and EC2.

ACKNOWLEDGMENTS

This research was supported in part by U.S. National Sci-
ence Foundation research grants CNS-1422119, CNS-
1320122, CNS-1217979, and NSF of China research grant
61328203. A preliminary version of the paper appeared
in [11]. The authors are grateful to the editor and anony-
mous reviewers for their valuable suggestions for revising
the manuscript. Xiaobo Zhou is a corresponding author.

REFERENCES

[1] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. N. Vijaykumar,
“Tarazu: Optimizing mapreduce on heterogeneous clusters,” in
Proc. Int. Conf. Architecture Support Program. Language Operating
Syst., 2012, pp. 61–74.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. USENIX Symp. Operating Syst. Des. Implementa-
tion, 2008, pp. 29–42.

[3] D. Cheng, J. Rao, C. Jiang, and X. Zhou, “Resource and deadline-
aware job scheduling in dynamic hadoop clusters,” in Proc. IEEE
Int. Symp. Parallel Distrib. Process., 2015, pp. 956–965.

[4] D. Cheng, P. Lama, C. Jiang, and X. Zhou, “Towards energy effi-
ciency in heterogeneous hadoop clusters by adaptive task assign-
ment,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2015, pp. 359–
368.

[5] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size fits all:
Automatic cluster sizing for data-intensive analytics,” in Proc. ACM
Symp. Cloud Comput., 2011, pp. 18:1–18:14.

[6] H. Herodotou, et al., “Starfish: A self-tuning system for big data
analytics,” in Proc. Conf. Innovative Data Syst. Res., 2011, pp. 261–
272.

[7] H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-
based optimization of MapReduce programs,” in Proc. Int. Conf.
Very Large Data Bases, 2011, pp. 1111–1122.

[8] P. Lama and X. Zhou, “AROMA: Automated resource allocation
and configuration of MapReduce environment in the cloud,” in
Proc. Int. Conf. Autonomic Comput., 2012, pp. 63–72.

[9] M. Li, et al., “MRONLINE: MapReduce online performance
tuning,” in Proc. ACM Symp. High-Performance Parallel Distrib.
Comput., 2014, pp. 165–176.

[10] T. White,Hadoop: The Definitive Guide, 3rd ed. O’Reilly Media/Yahoo
Press, Sebastopol, California, 2012.

[11] D. Cheng, J. Rao, Y. Guo, and X. Zhou, “Improving mapreduce
performance in heterogeneous environments with adaptive task
tuning,” in Proc. ACM/IFIP/USENIX Int. Middleware Conf., 2014,
pp. 97–108.

[12] Cloudera, “Configuration parameters,” 2012. [Online]. Available:
http://blog.cloudera.com/blog/author/aaron/

[13] MapR, “The executives guide to big data,” 2013. [Online].
Available: http://www.mapr.com/resources/white-papers

[14] PUMA, “Purdue mapreduce benchmark suite,” 2012. [Online].
Available: https://engineering.purdue.edu/ puma/datasets.htm

[15] Y. Guo, J. Rao, and X. Zhou, “iShuffle: Improving hadoop perfor-
mance with shuffle-on-write,” in Proc. Int. Conf. Autonomic Com-
put., 2013, pp. 107–117.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multi objective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[17] B. Igou, “User survey analysis: Cloud-computing budgets are
growing and shifting; traditional it services providers must pre-
pare or perish,” Gartner Report, G00205813, 2010.

CHENG ETAL.: IMPROVING PERFORMANCE OF HETEROGENEOUS MAPREDUCE CLUSTERS WITH ADAPTIVE TASK TUNING 785

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

[18] B. Palanisamy, A. Singh, and L. Liu, “Cost-effective resource pro-
visioning for MapReduce in a cloud,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 5, pp. 1265–1279, May 2015.

[19] B. Sharma, T. Wood, and C. R. Das, “Hybridmr: A hierarchical
MapReduce scheduler for hybrid data centers,” in Proc. IEEE Int.
Conf. Distrib. Comput. Syst., 2013, pp. 102–111.

[20] R. C. Chiang and H. H. Huang, “Interference-aware scheduling
for data-intensive applications in virtualized environments,” in
Proc. Int. Conf. High Performance Comput., Netw., Storage Anal.,
2011, pp. 1–12.

[21] B. Cho, et al., “Natjam: Eviction policies for supporting priorities
and deadlines in MapReduce clusters,” in Proc. ACM Symp. Cloud
Comput., 2013, pp. 6:1–6:17.

[22] D. Cheng, J. Rao, C. Jiang, and X. Zhou, “Elastic power-aware
resource provisioning of heterogeneous workloads in self-sustain-
able datacenters,” IEEE Trans. Comput., vol. 65, no. 2, pp. 508–521,
Feb. 2016.

[23] D. Cheng, C. Jiang, and X. Zhou, “Heterogeneity-aware workload
placement and migration in distributed sustainable datacenters,”
in Proc. IEEE Int. Symp. Parallel Distrib. Process., 2014, pp. 307–316.

[24] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing
hadoop provisioning in the cloud,” in Proc. USENIX HotCloud
Workshop, 2009, Art. no. 22.

[25] Y. Guo, J. Rao, C. Jiang, and X. Zhou, “Moving MapReduce into
the cloud with flexible slot management,” in Proc. Int. Conf. High
Performance Comput., Netw., Storage Anal., 2014, pp. 959–969.

Dazhao Cheng received the BS and MS degrees
in electronic engineering from Hefei University of
Technology, in 2006 and the University of Science
and Technology of China, in 2009, respectively,
and the PhD degree from the University of Colo-
rado, Colorado Springs, in 2016. He is currently
an assistant professor in the Department of Com-
puter Science, University of North Carolina, Char-
lotte. His research interests include cloud
computing and big data prcoessing. He is a mem-
ber of the IEEE.

Jia Rao received the BS and MS degrees in com-
puter science from Wuhan University, in 2004 and
2006, respectively, and the PhD degree from
Wayne State University, in 2011. He is currently
an assistant professor in the Department of Com-
puter Science, University of Colorado, Colorado
Springs. His research interests include the areas
of distributed systems, resource auto-configura-
tion, machine learning, and CPU scheduling on
emerging multi-core systems. He is a member of
the IEEE.

Yanfei Guo received the BS degree in computer
science and technology from Huazhong Univer-
sity of Science and Technology, China, in 2010,
and the PhD degree in computer science from
the University of Colorado, Colorado Springs, in
2015. He is currently a postdoc fellow in the
Argonne National Lab. His research interests
include cloud computing, big data processing,
MapReduce, and HPC. He is a member of the
IEEE.

Changjun Jiang received the PhD degree from
the Institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 1995. Currently he is
a professor in the Department of Computer Sci-
ence, Tongji University, Shanghai. He is also the
director of the Professional Committee of Petri
Net of China Computer Federation and the vice
director of the Professional Committee of Man-
agement Systems of China Automation Federa-
tion. His research interests include concurrent
theory, Petri net, and intelligent transportation
systems. He is a member of the IEEE.

Xiaobo Zhou received the BS, MS, and PhD
degrees in computer science from Nanjing Uni-
versity, in 1994, 1997, and 2000, respectively.
Currently he is a professor and the chair in the
Department of Computer Science, University of
Colorado, Colorado Springs. His research lies
broadly in computer network systems, specifi-
cally, cloud computing and datacenters, bigdata
parallel and distributed processing, autonomic
and sustainable computing, scalable Internet
services, and architectures. He received the NSF
CAREER Award in 2009. He is a senior member
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

786 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:44:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

