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ABSTRACT
As MapReduce is becoming increasingly popular in large-scale data
analysis, there is a growing need for moving MapReduce into multi-
tenant clouds. However, there is an important challenge that the
performance of MapReduce applications can be significantly influ-
enced by the time-varying network bandwidth in a shared cluster.
Although a few recent studies improve MapReduce performance
by dynamic scheduling to reduce the shuffle traffic, most of them
do not consider the impact by widely existing hierarchical network
architectures in data centers. In this paper, we propose and design
a Hierarchical topology (Hit) aware MapReduce scheduler to mini-
mize overall data traffic cost and hence to reduce job execution time.
We first formulate the problem as a Topology Aware Assignment
(TAA) optimization problem while considering dynamic comput-
ing and communication resources in the cloud with hierarchical
network architecture. We further develop a synergistic strategy
to solve the TAA problem by using the stable matching theory,
which ensures the preference of both individual tasks and host-
ing machines. Finally, we implement the proposed scheduler as a
pluggable module on Hadoop YARN and evaluate its performance
by testbed experiments and simulations. The experimental results
show Hit-scheduler can improve job completion time by 28% and
11% compared to Capacity Scheduler and Probabilistic Network-
Aware scheduler, respectively. Our simulations further demonstrate
that Hit-scheduler can gain the traffic cost by 38% at most and
improve the average shuffle flow traffic time by 32% compared to
Capacity scheduler.
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1 INTRODUCTION
While many enterprises and organizations have aggressively de-
ployed highly scalable data-parallel framework likes MapReduce [9]
to process petabytes of data every day, a recent trend is to move
MapReduce applications from the environment of dedicated clusters
to multi-tenant shared clusters, such as Amazon EC2, to improve
the cluster utilization. However, there is an important challenge that
the performance of MapReduce applications can be significantly
influenced by the network bandwidth in a shared cluster. As the
network resource is shared among virtual machines hosting various
applications or among different computing frameworks, the band-
width available for MapReduce applications becomes changeable
over time.

The data communication traffic in MapReduce is mainly caused
by two factors, i.e., remote map access and intermediate data shuffle.
Many popular techniques like delay scheduling [29] and flow-based
scheduling [28] are designed to place individual Map tasks on the
machines or racks where most of their input data is located, which
aims to reduce the remote map traffic. However, most intermediate
data sets still spread over the cluster randomly in a distributed
HDFS (Hadoop Distributed File System). The subsequent job stages
(i.e., shuffle) have to transfer intermediate data cross machines or
racks, which are often heavily congested by the constrained band-
width. Prior studies [2, 14] have shown the shuffle traffic mostly
dominates the overall performance of MapReduce jobs compared to
the remote map traffic. Thus, a few recent studies [2, 30] improve
MapReduce performance by dynamic scheduling to reshape or re-
duce the shuffle traffic. However, most of them do not consider the
impact by widely existing complex network architectures in data
centers, or just set up a simple model for workload scheduling. In-
deed, a large number of researches have payed attention to the areas
of MapReduce scheduling and network policy management, respec-
tively. However, dynamic MapReduce task scheduling and network
policy optimization have been so far addressed in isolation, which
may significantly degrade the overall system performance. On the
one hand, studies [15], [27] have focused primarily on exploiting
software defined networking and network function virtualization
in the area of network policy management. They mainly assume a
static allocation of compute resources, which is not true in most real
clusters. On the other hand, MapReduce task scheduling has largely
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concentrated on the flexible assignment, efficient placement and
locality awareness to maximize various cluster resource (e.g., CPU,
MeM and network I/O) utilization, and optimize application level
SLAs. However, there are very few works on dynamic task assign-
ment in conjunction with dynamic network policy configuration
to optimize the cluster wide communication cost.

In this paper, we tackle this challenging problem by jointly op-
timizing task scheduling and network policy management in the
cloud with hierarchical network architecture. We find that the cor-
relation between the network architecture and the task scheduling
is very weak under the current popular schedulers. The shuffle-
heavy data does not correspond to the low latency route due to two
factors. First, the data fetching time of reduce tasks depends on not
only distribution of the intermediate data in the cluster but also the
limited bandwidth. Second, the bandwidth on the routing path is
not static but dynamic, which is also influenced by the assignment
of tasks running in the cloud. In this work, we propose and design
a Hierarchical topology (Hit) aware MapReduce scheduler to mini-
mize overall data traffic cost and hence to reduce job execution time.
More specifically, we make the following technical contributions.
• We formulate the problem as a Topology Aware Assignment
(TAA) optimization problemwhile considering dynamic com-
puting and communication resources in the cloud with hier-
archical network architecture. To achieve jointly optimizing
network policy and task assignment, we model traffic flow,
traffic policy, task assignment, routing path and correspond-
ing cost according to flow-based traffic policy.
• We find that optimizing each shuffle flow to obtain a globally
optimal task assignment is NP-Hard. We then develop a
synergistic strategy to solve the TAA problem by using the
stable matching theory, which ensures the preference of both
individual tasks and hosting machines.
• We implement the proposed scheduler as a pluggable module
on Hadoop YARN and evaluate its performance by testbed
experiments and simulations. The experimental results show
Hit-scheduler can improve job completion time by 28% and
11% compared to Capacity Scheduler and Probabilistic Network-
Aware scheduler, respectively. Our simulations further demon-
strate that Hit-scheduler can gain the traffic cost by 38% at
most and improve the average shuffle flow traffic time by
32% compared to Capacity scheduler.

The rest of this paper is organized as follows. Section 2 gives
background and motivations on shuffle traffic optimization. Sec-
tion 3 describes the modeling and formulation of TAA problem.
Section 5 gives details on solution design. Section 6 gives details
on system implementation. Section 7 presents experimental results.
Section 8 reviews related work. Section 9 concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 Performance Impact due to Data Shuffle
When running a MapReduce job, Map and Reduce tasks are usually
scheduled to maximize concurrency (i.e., occupy the entire clus-
ter or as much as possible) in order to improve cluster utilization
or achieve load balance. As Reduce tasks have to read the output
from the corresponding Map tasks, such all-map-to-all-reduce shuf-
fle operation results in an all-node-to-all-nodes communication,

Table 1: Benchmarks Characterization

Workload Type Benchmark Proportion and Type
Shuffle-heavy terasort(5%), index(10%), join(10%), sequence

count(10%), adjacency(5%)
Shuffle-medium inverted-index(10%), term-vector(10%)
Shuffle-light grep(15%), wordcount(10%), classifica-

tion(5%), histogram(10%)

Figure 1: Traffic Volume During Shuffle Phase

which stresses the network bisection bandwidth. In particular, con-
currently running multiple shuffle-heavy jobs may significantly
increase the pressure of network bandwidth [7]. Although many
existing schedulers pay attention to optimize remote map access
traffic, most of them are shuffle-unaware and result in high pressure
on the network in the cloud. This is due to the fact that Reduce
tasks are typically scheduled well before the completed distribution
of Map output is known.

To identify the impact of shuffle communication, we analyze a
few representative workloads consisting of benchmark drawn from
Apache Hadoop release [1]. The benchmarks are characterized as
Shuffle-heavy, Shuffle-medium and Shuffle-light, and the percent-
ages of different jobs are shown in Table 1. Figure 1 shows that the
actual volumes of the total Shuffle traffic and remote Map traffic for
Shuffle-heavy, Shuffle-medium and Shuffle-light jobs, respectively.
The result shows the Shuffle data volume of Shuffle-heavy jobs has
a significant contribution (>75%) of the total communication traffic,
and the contribution of the remote Map traffic is less than 20%
of the total communication traffic. This observation demonstrates
that the shuffle traffic dominates the overall performance of Shuffle-
heavy jobs compared to the remote map traffic. Thus, we focus on
optimizing the data shuffle traffic for MapReduce applications.

2.2 Challenges due to Hierarchical Networks
Current data centers follow to a great extend a common network
architecture, known as the three-tier architecture [1]. At the bottom
level (i.e., access tier), each server connects to one (or two) access
switch. At the aggregation tier, each access switch connects to one
(or two) switches. Finally, each aggregation switch connects with
multiple switches at the core tier. Figure 2 shows a 2-layer topology,
which is usually rooted at one of the core switches. There are more
alternative architectures proposed recently, such as VL2 [12], Port-
Land [23] and BCube [13]. In contrast, most existing task scheduling
policies do not consider the possible impact by these hierarchical
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(a) Traffic-unaware flow (b) Traffic-aware flow

Figure 2: Workflow under hierarchical networks.

network architectures, or just set up a simple model for data inten-
sive applications.

These topology unaware strategies may significantly deteriorate
the system performance in the hierarchical network architecture.
For example, Figure 2 depicts a scenario that the task(R1) requires to
transfer the related data from the task(M1). As shown in Figure 2(a),
the shuffle traffic flow fromM1 task to R1 task is configured to tra-
versew2,w1 andw4 sequentially. Since the capacity of each switch
is constrained by the processing rate, the overloadedw1 will lead
to the packets of this shuffle traffic flow being rejected. An alter-
native solution is to optimize the shuffle traffic flow as shown in
Figure 2(b) and correspondingly achieves lower network overhead.
Furthermore, cloud environment hides the physical topology of the
infrastructure, which inhibits optimal scheduling. For instance, the
tasks associated with a job may be placed across multiple racks
while this information is not typically visible to the application. Ap-
parently, topology invisible solutions will lead to a longer transfer
time to shuffle large amounts of intermediate data to Reduce task.

2.3 Case Study
We conducted a case study based on a 5-node Hadoop cluster (i.e.,
one master nodes and four slave nodes) and ran two jobs (one
shuffle-heavy job and one shuffle-light job) with the same input
data sizes by using different schedulers. As shown in Figure 3, four
slave nodes are connected via the Tree network topology. We set
different network latencies betweenmachines by implementing API
DelayFecther(), which provides a function to mimic the task level
data transmission delay between machines. In order to simplify
the data shuffle analysis, we configure that each server can host
at most two tasks. In the experiment, we submit jobs by using
Capacity Scheduler to enqueue and assign the Map and Reduce
tasks to different nodes. Here, we assume that the delay caused by
one switch equals to 1 (T) and the total delay caused by the network
is linearly related to the number of switches the data packets have
traversed [22].

After job executions completed, we analyze the related log files
and find that the total shuffle data for Job 1 is nearly 34 GB and 10
GB for Job 2. It demonstrates that Job 1 is shuffle heavy and Job 2
is shuffle light workload. In particular, we focus on two selected
Map tasks and two selected Reduce tasks as shown in Figure 3. The

(a) Topology-unaware (b) Topology-aware

Figure 3: Assigning Job 1 (M1, R1) and Job 2 (M2, R2) in the
cloud.

log files show that Map tasksM1 andM2 are assigned to server S1
while Reduce tasks R1 and R2 are assigned to S4 and S2, respectively.
Based on our assumption, the network delay between machines
can be calculated based on the number of switches. For example,
the delay between S1 and S2 is 3 (T). In the shuffle phase, the overall
latency is determined by the size of shuffle data and the network
delay. The statics from the log files show that the total shuffle delay
cost is 112 (GB*T). In contrast, a better solution is to assign reduce
task R1 to server S2 and R2 to S4 based on the given network ar-
chitecture. Then the total shuffle delay cost can be reduced to 64
(GB*T) correspondingly, which achieves nearly 42% improvement
compared with the original task placement policy. The above ob-
servations demonstrate that the shuffle-heavy data transmission
does not correspond to the low latency route in the hierarchical
network architecture. It may lead to network overhead and degrade
the performance while scheduling different types of workloads in
the cloud.

3 PROBLEM MODELING
3.1 Formulation
We consider a multi-tier data center network which is typically
structured under a multi-root tree topology such as canonical [16].
Let S = {s1, s2, s3...} be the set of servers in the data center and
C = {c1, c2, c3...} be the set of containers hosted by the servers.
We use ri to denote the physical resource requirements of ci , such
as memory size, CPU cycles. Accordingly, the available physical
resource of sj is defined as qj . Hence, we use

∑
ci ∈A(sj ) ri ≤ qj to

denote that sj has sufficient resource to accommodate containers
ci , in which A(sj ) defines the set of containers hosted by sj , and ri
is the resources requirement of ci .

Running MapReduce application in the cloud, the shuffle traffic
is flow-based. We define the shuffle traffic flow as F = { f1, f2, f3...}.
For each flow fi , it has several important properties {size, src, dst}.
Correspondingly, fi .src specifies the source container running Map
task while fi .dst specifies the destination container running Reduce
task, e.g., fi .src = c1 and fi .dst = c2. The data rate of fi .rate is
represented by the shuffle data rate from fi .src to fi .dst . Then we
define a binary variable xi j (xmij ,x

r
i j ) to denote whether the jth Map
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or Reduce task is assigned to the container ci . Each container can
host at most one Map or Reduce task.

Let W = {w1,w2,w3...} denote the set of all switches in the
cloud. Each switch has two properties, {capacity, type}. We define
that wi .capacity is the capacity of wi , and wi .type is the type of
the switches. The set of policies for shuffle traffic is defined as
P = {p1,p2,p3...}. In general, the shuffle traffic flows and policies in
the cloud are one-to-one correspondence. For each policy pi , it also
has important properties {list, len, type}, where pi .l ist is the list of
switches that fi will traverse, e.g. pi .l ist [0] is the first access switch
that the flow will traverse. And pi .len is the size of the switches
list. And pi .type is the type of ith switch the flow will traverse, e.g.
pi .type[0] is the type of the first switch in the list. Let P(ci , c j ) be
the policies defined for shuffle traffic from container ci to c j .

Here, we define that if and only if all the required switches are
allocated to pi with the correct type and order, then the policy pi is
satisfied.

pi .type[j] == wtype ,∀w = pi .l ist [j], j = 1, ...,pi .len .

We denote R(ni ,nj ) as the routing path between nodes (i.e., servers,
switches) ni and nj . For a shuffle traffic flow fi , its actual routing
path is:

Ri ( fi .src , fi .dst ) = R ( fi .src ,pi .l ist [0])

+

pi .len−2∑
j=1

R (pi .l ist [j],pi .l ist [j+1])

+ R (pk .l ist [pk .len−1], fi .dst ).

(1)

Hence, we define the shuffle cost of all the traffic from containers
ci to c j as

C (ci , c j ) =
∑

pk ∈P (ci ,c j )

∑
fk ∈Rk (ci ,c j )

fk .rate × cs

=
∑

fk ∈Rk (ci ,c j )

{Ck (ci ,pk .l ist [0])

+

pi .len−2∑
j=1

Ck (pk .l ist [j],pk .l ist [j+1])

+Ck (pk .l ist [pk .len−1], c j )},

(2)

in which cs is the unit cost for corresponding routing path, and
Ck (ci ,pk .l ist [0]) is the shuffle traffic cost between ci and the first
access switch for flows which matches pk , while, similarly, we
define thatCk (pk .l ist [pk .len−1], c j ) is the shuffle traffic cost between
the c j and corresponding access switch.

4 MINIMIZING DATA SHUFFLE COST
We denote A(ci ) as the server which hosts container ci . And A(pk )
is the set of switches which are allocated to policy pk . Give the set
of containers C, servers S, policies P and switchesW, we define the
Topology Aware Assignment (TAA) of Map and Reduce tasks to

minimize the total shuffle traffic cost:

min
∑
ci ∈C

∑
c j ∈C

C (ci , c j )

s .t .A(ci ) , 0, ∀ci ∈ C;∑
i ∈R

xmij = 1;
∑
i ∈R

xri j = 1;∑
j ∈R

xri j +
∑
j ∈R

xmij = 1;

∑
ci ∈A(sj )

ri ≤ qj ;

∑
pk ∈A(wi )

fk .rate ≤ wi .capacity ,∀wi ∈ W;

pi .type[j] == wtype ,∀w = pi .l ist [j],∀pi ∈ P.

(3)

The first constraint ensures that each container is only deployed
on one server. The second constraint guarantees that one Map
or Reduce task is hosted by one container. The third constraint
demonstrates that one container can host one task. The fourth
and fifth constraints are the capacity requirement for switches and
servers. The sixth constraint requires that all the flow should satisfy
the traffic policies.

The above mentioned TAA problem is NP-Hard, we will show
that the Multiple Knapsack Problem (MKP) [19] can be reducible
to this topology aware task assignment in polynomial time. It has
been proven that the decision for MKP is strongly NP-complete.

The multiple knapsack problem [19] is one of the most studied
problems in combinatorial optimization, given n items, with each
item 1 ≤ j ≤ n having an associated profit pj and weightw j . Given
a set of K knapsacks with a corresponding ci capacity for each
knapsack, the MKP is to select k disjoint subsets of items such
that the total profit due to selected items is maximized. For each
knapsack, the total weight of items assigned to it in the subset
should be less than its capacity.

Let’s perform the mapping from MKP to a special case of our
TAA problem: : there a simple cluster containing only two physical
servers, i.e., s1 and s2, are connected through hierarchical edge
switches. For these servers, each of them is configured to host
n containers. All these containers form two equal groups A and
B. Group A hosts n Map tasks and group B hosts n Reduce task
respectively. We assume that all the Reduce tasks only have to
retrieve the output from a Map task in group A, resulting in n
shuffle traffic flows. To simplify the problem, here we assume that
each flow has to traverse one switch which is selected frommultiple
intermediate switches. Thus, a reasonable solution is to assign all
n containers hosting Map tasks to s1 and all n containers hosting
Reduce tasks to s2, correspondingly. Then, the TAA problem is
equivalent to finding an appropriate intermediate switches for each
flow. Then, we assume that each flow fi is an item to be assigned to
a knapsack, which is the intermediate switch here. Corresponding,
the size of item is fi .size and each knapsack has limited capacity.
The profit of assigning fi to one of intermediate switches is the
negative of the shuffle cost defined in the equation 3. The TAA
problem becomes finding an optimal allocation of all flows to the
corresponding intermediate switches, maximizing the total profit.



Hit-scheduler ICPP 2018, August 13–16, 2018, Eugene, OR, USA

(a) (b)

(c) (d)

Figure 4: Separated Optimization on Policies

Therefore, the MKP problem is reducible to the TAA problem in
polynomial time. The TAA problem is NP-Hard.

5 SOLUTION
5.1 Optimization between Network policy and

Task Assignment
5.1.1 Network Policy. When performing the network policy

optimization, it will possibly result in rescheduling the switches on
the selected path. Here, we denote pk .l ist [i] → ŵ as rescheduling
the ith switch of pk to a new switch ŵ . All the switches having
sufficient capacities to handle the shuffle data traffic are denoted as
the candidates to be rescheduled as below:

S (pk .l ist [i]) = {ŵ |ŵtype == pk .type[i],∑
pi ∈A(ŵ )

fi .rate ≤ ŵcapacity − fk .rate ,

∀ŵ ∈ W \ pk .l ist [i]}.

(4)

In the beginning, the flow fk is assigned with required switches
based on a random policypk . Thenwewill consider optimization on
intermediate switches (e.g. pk .l ist [i] ∀i=1,2, ... pk .len -2) and the end
access switches respectively (e.g. pk .l ist [0] or pk .l ist [pk .len−1]). We
start from simplest case that performing optimization of pk on one
switch pk .l ist [i] on intermediate access switches. Here, we define
the utility as the shuffle traffic cost reduction gained by optimizing
the shuffle traffic policy pk .l ist [i] → ŵ :

U (pk .l ist [i] → ŵ ) = Ck (pk .l ist [i−1],pk .l ist [i])

+Ck (pk .l ist [i],pk .l ist [i+1]) −Ck (pk .l ist [i−1], ŵ )

−Ck (ŵ,pk .l ist [i+1]).

(5)

If the optimization of pk involves two or more switches along
the flow path, we can optimize the policies by rescheduling the
corresponding switches one by one. For example, as shown in
Figure 4(a) and (b), if the original flow path w1 → w2 → w3 →
w4 is rescheduled as w1 → ŵ2 → ŵ3 → w4, the optimization can
be separated into Figure 4(c) and (d). The corresponding utility
remains the same:

U (w2 → ŵ2,w3 → ŵ3) = U (w2 → ŵ2) +U (w3 → ŵ3). (6)

The second case is that the optimization of pk is performed on end
access switches, which results inpk .l ist [0] → ŵ orpk .l ist [pk .len−1] →
ŵ . The difference between intermediate switches and end access

switches is that the associated source or destination container
should be considered, because the end access switches communicate
with containers directly. The utility of optimization on pk .l ist [0] is
shown as below:

U (pk .l ist [0] → ŵ ) = Ck ( fk .src ,pk .l ist [0])

+Ck (pk .l ist [0],pk .l ist [1]) −Ck ( fk .src , ŵ )

−Ck (ŵ,pk .l ist [1]).

(7)

5.1.2 Task Assignment. In order to assign tasks, we should make
sure that there are available containers to host the Map or Reduce
tasks. For example, if we want to optimize a task xi j hosted on ci
from currently allocated server A(ci ) to a new server ŝ , the candi-
date servers ŝ can be characterized by:

O (ci ) = {ŝ |(
∑

ck ∈A(ŝ )

rk + ri ≤ q̂)}. (8)

Let’s consider a container ci hosting jth map task, where xmij =1, is
allocated on server sk initially. The shuffle traffic cost induced by
ci between sk and the access switches is as below:

Ci (sk ) =
∑

pk ∈P (ci ,∗)

Ck (ci ,pi .l ist [0]). (9)

While optimizing the assignment of jth reduce task xri j , which is
original hosted on the container ci , the difference between optimiza-
tion on map tasks is that it only involves the last egress switches.
Similarly, the shuffle traffic cost is

∑
pk ∈P (∗,ci ) Ck (pi .l ist [pk .len−1], ci ).

Here we define the utility brought by rescheduling container ci
hosting xi j from A(ci ) to another server ŝ as below:

U (A(ci ) → ŝ ) = Ci (A(ci )) −Ci (ŝ ). (10)

5.1.3 Separable Optimization. For each flow, we can conclude
that the optimization of task assignment and network policies are
independent with each other. We can optimize them separately and
achieve the same total utilities as optimizing them together.

U (s1,w1,w2 → ŝ1, ŵ1, ŵ2)

= U (s1 → ŝ1) +U (w1 → ŵ1) +U (w2 → ŵ2).
(11)

From Equation 6 and 11, we can conclude that the rescheduling
order of individual switches and containers running corresponding
tasks are independent with each other and the total utilities remains
the same as optimizing all the switches on the routing path together.
These observations mean that the optimization of traffic policies
and task assignment can be performed independently.

5.2 Separated Optimization Strategy
In the following, we solve the above separable optimization prob-
lem based on a typical many-to-one stable matching, i.e., Stable
Marriage Problem.

5.2.1 Grading Tasks by Servers. A container, hosting Map or
Reduce task, usually has multiple shuffle traffic flows. It is difficult
to find the optimal policies for all of these flows. Considering the
separable properties observed above, we firstly optimize the traffic
policies for each Map and Reduce task pair. We then output a
preference matrix for all containers hosting tasks from the servers.

For a flow fi , it needs to traverse n = pi .len switches. Flows
originate from the source containers (fi .src ) hosting Map task xm

∗j ,
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Figure 5: Shuffle Traffic Flow Path

and terminate at the sink containers (fi .dst ) hosting Reduce task
xr
∗k . The container fi .dst or fi .dst can be possibly allocated to any
servers satisfying Equation 8. Similarly, the switches on the shuffle
traffic path should be all possible switches defined in Equation 4.
The weight of each edge is the corresponding shuffle cost between
two connected nodes. Figure 5 is an example traffic flow fk . It
originates from containers hosting Map tasks allocated on server
{si ,...,sj } and then traverses two kind of switches, finally terminates
at one of the containers hosting Reduce tasks allocated on {sm ,...,sn }.
Obviously, the shuffle traffic route which can achieve the highest
utility for Equation 5 is the optimal routing path from source to
sink. Here, we propose the Policy Optimization Alдorithm, which
is described in Algorithm 1. It aims to minimize the total shuffle
traffic cost via the optimization of policies. The optimal routing path
is returned in the line 5, where ssrc is the server, which is assigned
with container hosting Map task, and sdst is the destination server
which is assigned with container hosting Reduce task andwl ist is
the list of switches that the flow will traverse.

Based on the algorithm, we obtain an updated M×N preference
matrix P for task assignment, where M is the number of servers and
N is the number of containers hosting tasks. For each component
in the matrix, P(s,c) is the grade while assigning the container c
hosting corresponding task on server s. The grades are based on
the utility function and will be updated when rescheduling a new
routing path.

5.2.2 Grading Servers by Tasks. According to Equation 10, each
task hosted by corresponding container also can rank the candi-
date servers in decreasing order depending on their utility values.
In the policy optimization, we obtain the grades while assigning
containers hosting tasks to different candidate servers through the
preference matrix. We can also obtain the ranked order list for
each container, i.e. li = {c1, c2, ..., }, where c1 is the most preferable
container hosting corresponding task for the ith server.

5.2.3 StableMatching. The preferences of containers and servers
might be inconsistent, which have been proven to be a typical many-
to-one stable matching problem (i.e., Stable Marriage Problem [11]).
Here, we define a pair (ci , sj ), which means assigning ci container
hosting task on the sj server, as a blocking pair, if both ci and sj
prefer being together to their assignments. A matching is stable if
it does not have any blocking pairs. Thus, an unstable matching
between containers and servers will always give us opportunities
to find the optimal tasks assignment towards minimizing the total
shuffle traffic cost. Here, to solve the problem, we apply the modi-
fied Gale-Shapley algorithm to address the conflict, which is shown
in Algorithm 2. Initially, we should ensure that tasks are hosted

by containers. In the beginning, all servers and containers are un-
matched. Given a container ci hosting xi j , it will be first assigned
to its most preferred container sj , which can achieve the highest
utility and have not rejected ci yet. If sj has sufficient capacity, it
will accept ci . Otherwise, it will sequentially reject less preferable
containers, which is assigned to sj previously. Whenever sj rejects
a container, it will update the rejected-top variable, which indicates
the list of already rejected container by sj . Furthermore, the other
containers hosting corresponding tasks which are ranked lower
than the rejected-top will remove this sj from its preferred-list to
black-list.

Algorithm 2 always outputs a stable matching in O(M × N ),
where M is the number of servers and N is the number of con-
tainers hosting tasks. Here we denote µ as the matching between
containers hosting tasks and servers. We can prove the stability
of the matching pairs by contradiction. Suppose that Algorithm 2
produces a matching µ with a blocking pair (ci , sj ), i.e, there is at
least one container c′ =A(sj ) worse than ci according to lj . Because
ci should have been proposed to sj and rejected by it before. So
c′ should been rejected by sj , or sj have been added to black-list
of c′. So this matching output contradicts the assumption. Algo-
rithm 2 will always output a stable matching with the complexity
of O(M × N ).

Algorithm 1 Policy Optimization Algorithm
Require: W, C, F, P
Ensure: Preference Matrix P(M × N)
1: let F represent the shuffle traffic flows for application
2: for fk ∈ F do
3: apply policy pk on the flow fk
4: construct the shuffle traffic flow path
5: return optimal shuffle path (csrc ,wl ist , cdst )
6: for i = 1 towl ist .len do
7: if pk .l ist [i] ,wl ist [i] then
8: policy optimization: pk .l ist [i] →wl ist [i]
9: end if
10: end for
11: P(ssrc , fi .src ) ++
12: P(sdst , fi .dst ) ++
13: update preference matrix P(M × N)
14: end for
15: Return P

5.3 Applying Solution in Hadoop
The slave nodes of Hadoop cluster are configurable to concurrently
execute up to a particular number of Map (and Reduce) tasks. If
the number of Map (or Reduce) task in the job exceeds the number
of containers available, then Maps (or Reduces) are first scheduled
to execute on all available containers and these Maps (or Reduces)
form the first "wave" of tasks, and subsequent tasks form the second,
third, and subsequent waves. In this paper, each map and reduce
pair form a shuffle traffic flow, in which the container fi .src host
map task will transfer its output to container fi .dst host reduce
task. We characterize MapReduce task placement problem into two
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Algorithm 2 Tasks Assignment Algorithm

Require: Matrix P(M×N), X, C
Ensure: containers-based task assignment A
1: obtain ranked order list li , where si ∈ S
2: initialize the blacklist bk , where ck ∈ C
3: initialize Â = 0
4: allocate containers C for tasks by xik
5: while ∃ ck , ˆA(ck ) = 0 do
6: obtain sj where arдmaxs ∈S (ck )\bk U(A(ck ) → s )

7: ˆA(ck ) = sj ;
8: if

∑
∀ck ∈ ˆA(ck )

rk > qj then
9: repeat
10: cm ← last container according to lk
11: A(cm ) = 0
12: rejected-top← cm
13: until

∑
∀ck ∈ ˆA(ck )

rk ≤ qj

14: end if
15: for cn ∈ lk , where cn ≤ rejected-top do
16: bn = bn

⋃
sj

17: end for
18: end while
19: Perform tasks assignment
20: Update routing path

types: Map and Reduce initial placement and subsequent-wave
placement.

5.3.1 Initial-wave Task Scheduling. For the case where both Map
and Reduce tasks form the new waves, we should apply the Hit-
Scheduler to optimize both fi .src and fi .dst , minimizing the total
shuffle delay. In these cases, the map and reduce tasks have been not
assigned. We assume that they are randomly assigned in the begin-
ning. Each map and reduce pair form a shuffle traffic flow. Because
they have to transfer the map task’s output to corresponding reduce
task through the hierarchical topology. Under this assumption, we
use the Hit-Scheduler to make the placement decision.

5.3.2 Subsequent-wave Task Scheduling. For the case multiple
Mapwaves and one reduce wave, whereMap tasks occur inmultiple
waves, while Reduce tasks tend to complete in one waves, we do not
need to consider the optimization of the placement of Reduce task in
the same reduce wave, but only optimize the placement of Map task.
For the objective function, the destination of each shuffle traffic
flow fi .dst is static. This problem can be interpreted as finding
the optimal fi .src . In these cases, we can fix the destination of
each flow in TAA scheme, and greedily find the optimal placement
of map tasks. In this stage, we should pair the Map tasks that
have higher shuffle output with the physical servers which can
achieve low delay in network traffic. We choose one of the solution
among the all possible placement of Map tasks to achieve the lowest
communication delay in that wave. The total algorithm complexity
for these cases is O (n2).

6 IMPLEMENTATION ON HADOOP
In order to implement Hit-scheduler, we split our solution into
offline and online phase. In the offline phase, we profile the shuffle

data rate for each application and capture the topology architec-
ture configuration in the cluster. In the online phase, we add a
new class mapred.job.topologyaware to collect the information
of task placement, embedding shuffle traffic flow, network archi-
tecture and cluster configuration from the offline phase. We mod-
ify three mechanisms based on the default Hadoop. We use the
modified DelayFecther() to express the delay between two servers
in the cluster. We develop a new Hit − ResourceRequest based
on ResourceRequest to enable Hit-Scheduler to be aware of the
network architecture. We design a new class Hit − Scheduler to
implement the algorithm of the topology aware task assignment.

6.1 DelayFecther
Weadd a new function Sleep(Delay) into the original Fecthermech-
anism to obtain DelayFecther. The delay between two machines
si and sj is decided by the shuffle cost C(si , sj ) and correspond-
ing bandwidth on the path Bi j , so the delay for the flow is Delay
= C (si ,sj )

Bi j . With this component, we can mimic the performance
degradation caused by hierarchical network architecture.

6.2 Hit-ResourceRequest
Essentially an application can ask for specific resource requests
via the ApplicationMaster to satisfy its demand. The scheduler re-
sponds to a resource request by granting a container, which satisfies
the requirements laid out by the ApplicationMaster in the initial
ResourceRequest. To implement Hit − ResourceRequest, we spec-
ify resource-name as the preferred host for the specific task, which
is the hostname of the preferred machine. We update the preferred
resource-name for each task in Hit − ResourceRequest from the
class file mapred.job.topologyaware.taskdict.

6.3 Hit-Scheduler
For the resource allocation, container is the successful result of
the ResourceManager, which grants a specific request from a new
component Hit − ResourceRequest. A Container grants rights to
an application to use a specific amount of resources (e.g. memory,
CPU) on a preferred host. According to the optimal task assign-
ment via Hit − ResourceRequest, we use the Hit − Scheduler algo-
rithm to implement our strategy. For each task, we assign resource
by calling getContainer(Hit-ResourceRequest, node) if the task pre-
ferred container matches the current node with available resource.
Then the ApplicationMaster has to take the preferred container
and present it to the NodeManager managing the host, on which
the container was allocated, to use the resources for launching
corresponding tasks.

7 EVALUATION
7.1 Testbed and Hierarchical Network
The evaluation testbed consists 9 nodes, each of which is configured
with Intel Xeon(R) CPU E5-2630v4@2.20GHz x 20 and 32GB DDR3
memory, running Ubuntu 16.04 LTS operating system. One node
serves as the master node, and all the 8 nodes serve as slaves. The
nodes are connected by switches with 16GbE ports. We evaluate
the performance of our proposed strategy with Hadoop YARN by
using the benchmarks from Purdue MapReduce Benchmarks Suite
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Figure 6: CDF of Job Completion Times, Map and Reduce Task Execution Times under Various Policies.

(a) Average Route Length (b) Average Shuffle Delay

Figure 7: Comparison on Shuffle Traffic Flow

(PUMA) [3]. Based on the size of shuffled intermediate data, we
characterize the benchmarks as Shuffle-heavy, Shuffle-medium or
Shuffle-light in Table 1. The table also shows the percentage of jobs
of each type in the workload.

We use Mininet [8] to create a realistic virtual network, running
real kernel, switch and application code for hierarchical topology.
We create a network with a tree topology of depth 3 and fanout 8 (i.e.
64 hosts connected to 10 switches), using Open vSwitch switches
under the control of the OpenFlow reference controller. Through
these controllers, we can manage the switches and optimize the
corresponding policies. Under this simulation setup, a collection of
containers will communicate with each other through the network.
For each shuffle traffic flow, it should originate from the source
container which hosts map task, and terminate at the destination
container which hosts corresponding reduce task. And we imple-
ment a centralized controller to collect all the network information
and perform the policy optimization. In order to compare our strat-
egy against other schemes, we have also implemented Capacity
and Probabilistic Network-Aware scheduling schemes to assign the
tasks, and we use D-ITG [4] applying TCP protocol to measure
the average route length and shuffle traffic delay at packet level
accurately. To verify the scalability of our proposed Hit-Scheduler
under various architectures, we implement three other different
network architectures, i.e., FAT-Tree [20], BCude [13] and VL2 [12].

We evaluate the performance of our strategy in terms of the job
completion time and the improvement on shuffle flow. To verify
Hit-Scheduler algorithm’s scalability, we compare our performance
under different hierarchical network architectures, network band-
widths, job types and job numbers with Capacity scheduler and
Probabilistic Network-aware scheduler [26].

7.2 Improvement on Job Completion Time
Figure 6(a) shows that our strategy saves a significant amount
of time to complete MapReduce jobs. Specifically, Hit-Scheduler
outperforms Capacity scheduler 28% and Probabilistic Network-
Aware scheduling strategy 11% in terms of the job completion time
reduction, respectively. The reason is that our strategy takes the
hierarchical network architecture into account and jointly opti-
mizes the assignment of map and reduce tasks to reduce the cost
on shuffle phase. The results in Figure 6(b) also show that Ca-
pacity scheduler performs better in the beginning stage as more
resources are allocated to Map tasks for improving the resource
utilization. Probabilistic Network-Aware scheduler achieves better
performance than Hit-Scheduler during map phase due to the fact
that our strategy does not consider the remote access for map input.
However, the overall job completion time is better than Probabilis-
tic Network-Aware scheduler, which verifies our assumption that
shuffle traffics play a more important role when running MapRe-
duce applications in the cloud. Figure 6(c) further confirms that
Hit-Scheduler achieves significant improvement in terms of Reduce
task execution times compared to the other strategies.

Figure 7(a) illustrates the effectiveness on reducing the length
of the average routing path. It shows that Hit-Scheduler reduces
the average route path from 6.5 hops to 4.4 hops compared with
Capacity Scheduler, which achieves nearly 30% improvement. It is
because Capacity Scheduler is unaware of the network architecture,
resulting in longer flow route path which is caused by failing to
consider optimizing the traffic in the network. As a result of shorter
route path, Figure 7(b) shows that Hit-Scheduler reduces the aver-
age shuffle delay from 189 us to 131 us. Reducing the shuffle traffic
flow delay play an important role in improving the job completion
time.

7.3 Impact of Network Architecture and Job
Characterization

To illustrate the effectiveness of our strategy for different workloads,
we compare the shuffle cost reduction gained by Hit-Scheduler
with Probabilistic Network Aware Scheduler under the same Tree
network architecture. Figure 8(a) shows that for a single job, the re-
duction on shuffle cost increases to 38% for shuffle-heavy workload,
while 21% for Probabilistic Network Aware Scheduler. The results
also demonstrate that the improvements for the shuffle-light and
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(a) Different Job Types (b) Different Networks

Figure 8: Impact of NetworkArchitecture and Job Character-
ization

Figure 9: Sensitivity to Network Bandwidth

shuffle-medium datasets are not as apparent as the shuffle-heavy
dataset because they require less data shuffle traffic.

Figure 8(b) shows the shuffle traffic cost of the shuffle-heavy
workload under four different network architectures. It illustrates
that Map-and-Reduce style fits the Tree network architecture very
well because it results in less shuffle cost. Under all of these differ-
ent architectures, Hit-Scheduler outperforms Probabilistic Network
Aware Scheduler and Capacity Scheduler about 19% and 32% in
terms of the shuffle cost. Though Probabilistic Network Aware
Scheduler takes the network topology and bandwidth into consid-
eration, it cannot handle some complex topologies, e.g, VL2 shown
in the figure. This is because Probabilistic Network Aware Sched-
uler assumes that the network cost is static and fixed among all
nodes in the cloud and does not take the limited bandwidth into con-
sideration. Compared with Probabilistic Network Aware Scheduler,
Hit-Scheduler can effectively support various complex topologies
and correspondingly achieves better scalability.

7.4 Impact of Bandwidth and Job Numbers
We further implement a large-scale simulation to evaluate the net-
work policy, where we set the the total number of nodes to be
512, which are connected via Tree network. Figure 9 shows the
throughput improvement achieved by Hit-Scheduler and Proba-
bilistic Network Aware scheduler compared to Capacity scheduler
under varying bandwidth from 0.1Mbps to 60Mbps. It demonstrates
that Hit-Scheduler significantly outperforms Probabilistic Network
Aware scheduler especially when given the limited bandwidth. The
improvement can be nearly 48% while the bandwidth is limited to
0.1Mbps. This is due to the fact that Probabilistic Network Aware
scheduler assumes the communication cost between two nodes

Figure 10: Sensitivity to Job Numbers

is static and the routing path is single-one path, which is simply
decided by the number of switches it will traverse. Compared with
Probabilistic Network Aware scheduler, there are more opportuni-
ties for Hit-Scheduler to improve the throughput with the limited
bandwidth. To evaluate the sensitivity of Hit-Scheduler under vari-
ous job numbers, we investigate the overall cost reduction while
varying the number of jobs ranging from 3 to 18. Figure 10 shows
that the cost reduction by applying Hit-Scheduler increases signif-
icantly with the number of jobs at the beginning stage and then
increases slowly when the number is greater than 12. The reason is
that parallel running more jobs may provide more opportunities to
optimize the network traffic and task assignment to reduce traffic
cost. However, as the job number increasing, the cost reduction
is not apparent as the beginning stage since the bandwidth may
approaching the bottleneck. In comparison, the shuffle cost reduc-
tion gain by applying Probabilistic Network Aware scheduler is
relatively stable, i.e., around 15% and increases slowly.

8 RELATEDWORK
There are many network architectures [15], [27] to improve clus-
ter bisection bandwidth. However, most techniques require spe-
cialized hardware or communication protocols. Recent develop-
ment in SDN enable more flexible policy deployment over the net-
work. SIMPLE [25] is an SDN-based policy enforcement scheme to
steer traffic in data center according to policy requirements. Flow-
Tags [10] is proposed to leverage SDN’s global network visibility
and guarantee correctness of policy enforcement. However, they
are not fully designed with computation in consideration, and may
put the application running in the data center on the risk of policy
violation or performance degradation.

A number of researches have been proposed to improve the
scheduling for MapReduce jobs. Techniques like delay schedul-
ing [29] and Quincy [17] try to improve the locality of tasks by
scheduling them close to their input. Zaharia et al. [30] developed
a scheduling algorithm called LATE that tried to improve the re-
sponse time of short jobs by executing duplicates of some tasks in a
heterogeneous system. However, these techniques do not guarantee
locality for shuffle stages. Purlieus [24] and CAM [21] achieve lo-
cality via synergistic placement of virtual machines and input data.
ShuffleWacther [2] and iShuffle [14] try to improve the locality of
the shuffle by scheduling both maps and reducers on the same set of
racks. iShuffle [14] tries to improve job performance by decoupling
shuffle from reduce tasks and optimizing the scheduling of reduce
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tasks by automatic balancing workload. However, All But these
scheduling schemes do not explicitly take into account the cost
caused by network for deciding the placement of tasks, which may
lead to excessive latency in shuffling and degrade the performance
of job execution.

Recently, Corral [18] couples the placement of data and com-
putation, improving data locality for all stages of a job. Another
important category is network scheduling [6] [5], whose idea is
to schedule the flows or groups of flows at shared links, based
on given task placement to minimize the flow completion time.
The limitations are that the source or destination of each flow is
independently decided by the task scheduler and not necessarily
optimal. A transmission cost-based scheduling method, Probabilis-
tic Network-Aware Scheduler [26] was proposed considering the
network topology and link bandwidth. However, they assume that
network cost among nodes is static and the bandwidth for shuffle
flow is fixed. Actually, the computation running in the cloud and
transmission on the network will affect each other. Unlike previ-
ous works, we propose a task scheduling scheme taking both the
dynamic network policy and computation into account.

9 CONCLUSION
In this paper, we focus on jointly optimizing task scheduling and
network policy management in the cloud with hierarchical net-
work architecture. We have proposed and developed a hierarchical
topology aware MapReduce scheduler to minimize overall data
traffic cost and hence to reduce job execution time. The main tech-
nical novelty of Hit-scheduler lies in the integration of dynamic
computing and communication resources in hierarchical clouds.
As demonstrated by the modeling, optimization and experimental
results based on the testbed implementation, Hit-scheduler can
improve job completion time by 28% and 11% compared to Capacity
Scheduler and Probabilistic Network-Aware scheduler, respectively.
Our simulations further demonstrate that Hit-scheduler can gain
the traffic cost by 38% at most and improve the average shuffle flow
traffic time by 32% compared to Capacity scheduler.
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