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Abstract—The proliferation of Internet of Things (IoT) data and innovative mobile services has promoted an increasing need for
low-latency access to resources such as data and computing services. Mobile edge computing has become an effective computing
paradigm to meet the requirement for low-latency access by placing resources and dispatching tasks at the edge clouds near mobile
users. The key challenge of such solution is how to efficiently place resources and dispatch tasks in the edge clouds to meet the QoS
of mobile users or maximize the platform’s utility. In this paper, we study the joint optimization problem of resource placement and task
dispatching in mobile edge clouds across multiple timescales under the dynamic status of edge servers. We first propose a two-stage
iterative algorithm to solve the joint optimization problem in different timescales, which can handle the varieties among the dynamic of
edge resources and/or tasks. We then propose a reinforcement learning (RL) based algorithm which leverages the learning capability
of Deep Deterministic Policy Gradient (DDPG) technique to tackle the network variation and dynamic as well. The results from our
trace-driven simulations demonstrate that both proposed approaches can effectively place resources and dispatching tasks across two
timescales to maximize the total utility of all scheduled tasks.

Index Terms—resource placement, task dispatching, reinforcement learning, optimization, edge computing
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1 INTRODUCTION

Recently, there has been a tremendous growth of the new
computing paradigm - mobile edge computing [1]–[3] in both
academia and industry due to its advances over traditional
cloud computing (e.g., low-latency, agility, privacy). Espe-
cially as the increasing amount of data and services offered
by diverse applications and IoT/smart devices, network op-
erators and service providers are likely to build and deploy
computing resources (such as data, models, services) at the
edge of the network near users so as to shorten the response
time and support real-time intelligence applications.

As shown in Fig. 1, a typical edge computing envi-
ronment consists of mobile users, edge clouds (including
multiple edge servers connected by the edge network), and
a remote cloud (usually within data centers). Each edge
server is generally deployed at the network edge near
mobile users and owns specific storage, CPU, and memory
capacity. Mobile users can generate a couple of computation
tasks at any location which request to be dispatched at edge
servers with sufficient resources (i.e., internal computation
resources such as CPU, memory, storage) and may also
require certain data or services (i.e., external resources such
as training data or machine learning services). Note that
the types of computing tasks from mobile users/devices
are heterogeneous due to diverse settings and applications.
For example, some tasks may only request data (e.g. image,
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Fig. 1. A typical mobile edge computing environment where data and
services are placed at edge clouds and tasks are dispatched to different
edge servers. In this example, task 1 is performed at server 2, while task
2 and task 3 are performed at server 5.

video) or machine learning (ML) model from the edge
network, and then process it locally or perform ML com-
putation based on the model at local edge server. Some
tasks may request computation at other edge servers with
certain computation services, such as video analysis, speech
recognition, 3D rendering. Some tasks may need a combi-
nation of data, services and computation resources, such
as distributed federated learning or interactive augmented
reality. Fig. 1 shows some examples where tasks from mobile
users request either data/services or both. Note multiple
user tasks can be served by the same edge server and
the deployment of multiple copies of resources can usually
reduce the accessing cost or balance loads among servers.
The diverse types of tasks from mobile users and dynamic
available resources at edge servers introduce new challenges
in resource management and task dispatching in such a
complex edge computing system.
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Resource management and computation task offloading
in edge computing has been widely studied. For example,
[4] and [5] have studied the data placement strategy for
workflows in edge computing considering workflow’s de-
pendency, reliability, and user cooperation. Xie et al. [6], [7]
and Wei et al. [8], [9] have proposed different virtual space-
based data placement methods, where both data and servers
are mapped into a virtual space and the data placement
decision is based on the virtual distance in the space. Li et
al. [10] and Breitbach et al. [11] have investigated both data
and task placement in edge computing. While [10] adopted
a tabu search based algorithm to solve a joint optimization,
[11] considered data/task placement with multiple context
dimensions and proposed a context-aware replication strat-
egy. Beside of data placement, service placement has also
attracted researchers’ attention. Ouyang et al. [12] proposed
an adaptive user-managed service placement algorithm to
jointly optimize the latency and service migration cost. Xu
et al. [13] studied the service caching in mobile edge clouds
with multiple service providers and proposed a distributed
caching mechanism for resource sharing. Pasteris et al. [14]
also studied a multiple-service placement problem and pro-
posed an approximation algorithm to maximize the total
reward. There are also recent studies [15]–[18] on resource
allocation in edge computing. Zhang et al. [16] proposed a
decentralized multi-provider resource allocation scheme to
maximize the overall benefit of all providers, while Meskar
and Liang [15] proposed a resource allocation rule retaining
fairness properties among multiple access points. Kim et
al. [17] designed a joint optimization of wireless MIMO
signal design and network resource allocation to maximize
energy efficiency. Eshraghi and Liang [18] considered the
joint optimization of resource allocation and offloading de-
cision for mobile clouds. Similarly, service placement and
task/computation offloading has been considered jointly in
[19]–[23]. However, most of these works consider a kind of
joint optimization at a single timescale, thus may not han-
dle the dynamic among tasks, resources, and computation
facilities in the edge computing environment.

In a real dynamic edge computing environment, tasks
from mobile users generally have a small size and can
be easily moved around and distributed at different edge
servers for processing. However, the resources, such as data
and services, may not be adjusted fast enough to meet the
dynamic requirements of tasks. For example, it takes time
to reconfigure a service in a new edge server. Similarly,
migrating large amount of data also involves additional
costs. Therefore, it is nature to manage resources and tasks
at two different time scales, i.e., task dispatching can be
performed in a fast timescale, while resource placement can
occur in a slow timescale. Such multi-timescale solutions
have been shown to be more efficient than single timescale
methods in edge computing [24], [25]. In addition, a critical
factor that has been overlooked is the dynamic status of
edge servers. Edge servers are not always running due to
regular maintenance or certain events (e.g., power outage
and system error). If the status of an edge server is changed,
the overall topology of the edge network is changed and this
further affects the performance of the entire edge system.
Therefore, it is important to taking server status into the
resource placement and task dispatching.

In this paper, we jointly study the resource placement
and task dispatching problems in mobile edge computing
with the aim of maximizing the total utility of performed
tasks. We first formulate the problem as an joint opti-
mization problem under the storage, CPU, and memory
constraints and take the status of edge servers into account.
The overall problem is a nonlinear programming, and thus
hard to solve due to its high complexity. In addition, the
dynamics of tasks, resources, and the edge environment also
make solving this problem much harder. In this paper, we
then design two alternative approaches: two-stage optimiza-
tion method and deep reinforcement learning method. The two-
stage optimization method decomposes the joint optimiza-
tion problem to two sub-problems (resource placement and
task dispatching), and then solves them respectively and
iteratively. One nice property of this two-stage optimization
method is that it can be performed across two timescales,
i.e., performing the joint optimization in each time frame (at
a slow timescale) and task dispatching sub-problem only in
each time slot (at a fast timescale). To handle the dynamics in
edge environment and the complexity of the optimization,
we also leverage reinforcement learning (RL) techniques to
tackle our joint optimization problem. RL has been used
as an effective solution in edge computing [26], [27]. The
RL agent can improve its policy to achieve a better goal
according to the future reward feedback generated by the
environment. Our proposed RL method leverages the Deep
Deterministic Policy Gradient (DDPG) [28], [29] to solve the
joint optimization problem in dynamic edge environment.
Moreover, our deep RL method enables more flexible han-
dling of the multi-timescale problem either by controlling
the action or by leveraging multiple DDPG models.

In short, the contributions of this papers are three-folds.
• We formulate an joint optimization problem consider-

ing the storage, CPU, and memory constraints as well
as the edge server status for the resource placement and
task dispatching in mobile edge computing.

• We propose two alternative approaches, two-stage opti-
mization and deep reinforcement learning, to solve the joint
optimization problem. Both methods can be applied
across two timescales to deal with different dynamics
of tasks and resources in mobile edge computing.

• Extensive trace-driven simulations are conducted to
evaluate our proposed methods, and results show both
methods can effectively improve the total utility.

The outline of this paper is as follows. Section 2 first in-
troduces the system model and our formulated optimization
problems. Section 3 and Section 4 present our proposed two-
stage optimization method and deep reinforcement based
method, respectively. Evaluations of our proposed methods
via simulations are provided in Section 5. Section 6 presents
an overview of related works. Finally, Section 7 concludes
the paper with possible future directions. A preliminary
version of this paper appears as [30].

2 SYSTEM MODELS AND THE OPTIMIZATION

In this section, we first introduce our network and system
models under a general edge computing architecture. Then
we formulate the resource placement problem, the task
dispatching problem, and the joint optimization problem,
respectively.
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TABLE 1
Symbols used in the paper.

Symbol Notation
G,V,E, U,Q,D, S the edge network, the set of edge servers, direct links, tasks, resources, data items, services

vi, el, uk , qj a edge server, a direct link, a task, and a resource
N , M , Z, O the number of edge servers/links/tasks/resources
ci/cci, fi,mi the maximal/current storage, CPU frequency, memory capacity of edge server vi

pl, bl the propagation delay and network bandwidth of link el
oj , $j , ζj/ηj the storage size, download cost from the cloud, CPU/memory requirement of resource qj

γk/δk , βk , Ψk , ρk the CPU/memory requirement, output data size, arriving server, and benefit of task uk
wk,j , Ωk , αk an indicator whether resource qj is required by uk , the requested resource set and input size of task uk

t/τ , χ the index/duration of time unit (time slot), the number of time slots per time frame in two timescales
stti an indicator whether server vi is available at time t
xtj,i the data placement decision at t whether resource qj is placed at server vi, here xtj,i ∈ {0, 1}

f(qj , vk, vi) the placement cost of a resource item qj from vk to vi
pctj,i, ν

t
j the placement cost of resource qj to vi at t, and the placement cost of resource qj at t

ωj the indicator whether resource qj is requested by any task
σtj,k , σ̄tj,i the accessing cost of task uk for qj at t, and the accessing cost of qj from server vi at t

Υk = Υ(uk) the server assigned by the tasking dispatching of uk
ytk,i the task dispatching decision at t whether task uk is dispatched to server vi, here ytk,i ∈ {0, 1}
ξk(z) the CPU cycles to process task uk with the input data/service size z

Cinputk,i /Coutputk,i , Ccompk,i the accessing cost of resource/output and the computation cost of task uk at server vi
ςtk,i the completion cost of uk at server vi at t

xt,ιj,i, y
t,ι
k,i the data placement of resource qj and dispatching decision of task uk to server vi at t in ι-th round

cri the available computing resources (e.g., storage, CPU, memory) of server vi
RPj = {rpj,i}, TDk = {tdk,i} the placement decision of resource qj and the dispatching targets of task uk over each server vi

ssι ∈ SS, aaι ∈ AA the system state at step ι in the state space SS, the system action at step ι in the action space AA
rrι the award obtained given the agent’s action aaι at step ι

µ(s|θµ), µ′(s|θµ′
) the actor evaluation and target networks

Q(ss, aa|θQ), Q′(ss, aa|θQ′
) the critic evaluation and target networks

θµ, θQ, θµ
′
, θQ

′
the evaluation network parameters and target network parameters

D, K the replay buffer, the number of sampled data from D
zi, γ, ε the expected value/reward, discount factor of future reward, and update rate for target networks

2.1 Network and System Models
Without loss of generality, we construct a typical mobile
edge computing architecture as shown in Fig. 1. The edge
network topology is defined as graph G(V,E), consists
of N edge servers and M direct links among them. Here,
V = {v1, · · · , vN} and E = {e1, · · · , eM} are the set of
edge servers and the set of links, respectively. For each
server vi ∈ V , it has a maximal storage capacity ci, a
CPU frequency fi, a memory capacity mi, and the current
remaining storage capacity cci. For each link el ∈ E, it has a
propagation delay pl and a network bandwidth bl.

Assume that there are X data items (D = {d1, · · · , dX}),
Y services (S = {s1, · · · , sY }) and Z computing tasks
(U = {u1, · · · , uZ}). Since both data items and services
can be considered as needed resources for computing tasks,
we treat them as O = X + Y resources in total, i.e.,
Q = {q1 = d1, . . . , qX = dX , qX+1 = s1, . . . , qO = sY }.
For each resource qj , it has a storage size of oj , a download
cost$j from the cloud, a CPU requirement ζj and a memory
requirement ηj , respectively. Note that for the data resource,
its CPU and memory request are set to 0. Each task uk
has a requested resource set Ωk, a CPU requirement γk, a
memory requirement δk, a size of expected output data βk,
the arriving server Ψk, and a benefit ρk.

To define the requested resources for task uk, we intro-
duce a binary variable ωk,j as the indicator whether resource
qj is required by task uk.

ωk,j =

{
1, resource qj is required by task uk,
0, otherwise.

Then, the requested resource set Ωk = {qj |ωk,j = 1},
and its input resource size αk can be calculated as αk =∑O
j=1 ωk,joj . Note that the resource requested by task uk

cloud be either data items or specific services.
We assume that tasks arrive at discrete time unit t. The

duration of such time unit is τ . Later, we will discuss the
case where multiple time scales are used (Sections 3.2 and
4.3). For each server vi, we also assume there is a status
indicator stti to represent whether this server is available
at time t (available when stti = 1, not available when
stti = 0). There are two possible causes to unavailability:
predictable (such as scheduled update or maintenance) or
sudden events (such as power-outage). Here we mainly
consider the first type of cases. For the latter case, different
back-up strategies should be considered.

Table 1 summarizes the key symbols used in our paper.
2.2 Resource Placement
We first consider a resource placement problem where a
placement decision is needed for each resource qj at time
t. A binary variable xtj,i is defined as the placement decision
in time t where resource qj is placed in edge server vi.

xtj,i =

{
1, qj will be placed in vi at t,
0, otherwise.

(1)

Here, we assume that data items or services can have
replicas in edge cloud (i.e.

∑N
i=1 x

t
j,i can be larger than 1).

In addition, an edge server may store multiple data and
services, but the total storage size placed in edge server vi
cannot exceed its current remaining storage capacity:
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O∑
j=1

xtj,ioj ≤ stti · cci, for all vi. (2)

For services, there are also specific CPU and memory re-
quirements on the placed server.

xtj,iζr ≤ stti · fi, for all vi, qj . (3)

xtj,iηr ≤ stti ·mi, for all vi, qj . (4)

The resource placement aims to maximize the total
benefit minus the total cost from all serving tasks, while
satisfying resource constraints. Here, we consider two types
of costs from serving tasks: placement cost and accessing cost.

For the placement cost of a resource item qj to a server
vi during the placement, we consider two possible ways: (a)
directly downloading from the cloud with a cost of $j , or
(b) transferring from a nearby server vk, which holds a copy
of qj at t − 1, with a cost of f(qj , vk, vi). Here, assume that
Pj is the shortest path in Gt connecting vk and vi1, then the
cost f(qj , vk, vi) can be defined as follow.

f(qj , vk, vi) =

{
0, if vi = vk∑
el∈Pj (

oj
bl

+ pl), otherwise.
(5)

Thus, the placement cost of qj to vi at t is the minimal
among all these, i.e.,

pctj,i =

{
0, if xt−1

j,i = 1

min($j ,mink 6=i(x
t−1
j,k f(qj , vk, vi))), otherwise.

(6)
Note that if qj is already in vi at t − 1, no cost is needed.
Then, the placement cost for data qj at t can be defined as

νtj =
N∑
i=1

xtj,i · pctj,i. (7)

We also define a variable to indicate whether resource qj is
requested by any task:

ωj =

{
1, if

∑
k ωk,j ≥ 1

0, otherwise.
(8)

For the accessing cost of resource after the data/service
is placed, let σtj,k be the accessing cost for resource qj
required by task uk. Note that the accessing cost depends on
which edge server task uk is processed at. Let Υk = Υ(uk)
be the server assigned by the tasking dispatching of uk. The
accessing cost of qj can be defined as

σtj,k = min
vi 6=Υk

xtj,if(qj ,Υk, vi). (9)

If without task dispatching, we assume that task uk is
processed at its arriving server Ψk, then the accessing cost
is

σtj,k = min
vi 6=Ψk

xtj,if(qj ,Ψk, vi). (10)

In general, we define the accessing cost of qj from any edge
server vi is

σ̄tj,i = min
l 6=i

xtj,lf(qj , vl, vi). (11)

Since each of serving tasks has benefit of ρk, the utility
of each task uk can be defined as

∑
j(ρk − ωk,j · σtj,k).

Now we can formulate the resource placement problem
as an optimization problem. The objective is to maximize

1. Here Gt represents the edge network formed by all available
servers at time t. The shortest path is defined regarding the summation
of propagation and transmission delays of qj over the path.

total utilities from all serving tasks minus the summation of
accessing costs for all resource at time t.

max
∑
k

∑
j

(ρk − ωk,j · σtj,k)−
∑
j

ωj · νtj

s.t.
∑
j

xtj,ioj ≤ stti · cci, ∀i

xtj,iζr ≤ stti · fi, ∀i, j
xtj,iηr ≤ stti ·mi, ∀i, j
xtj,i ∈ {0, 1}, ∀i, j
i ∈ (1, 2, . . . , N), j ∈ (1, 2, . . . , O).

(12)

2.3 Task Dispatching

In terms of task dispatching, we assume all tasks arrive in
edge network in an arbitrary order. At time t, the goal of task
dispatching is to find an optimal edge server vi to process
each task uk in order to minimize the total completion cost
of the task. Specifically, the total completion cost of a task
uk mainly consists of three parts: (a) the accessing cost of
resources required by uk, (b) the computation cost of uk,
and (c) the transmission cost of output data of uk.

We denote ytk,i as the task dispatching decision at t
whether task uk is dispatched to edge server vi.

ytk,i =

{
1, task uk is dispatched to server vi at t,
0, otherwise.

(13)

Here we assume that each task is at most dispatched to a
single server, i.e.,

∑N
i=1 y

t
k,i ≤ 1.

Note that there are different types of tasks: some only
need data from the edge network, some only need to per-
form general computation at any server either with data or
not, some need to perform specific computation with certain
service at the available server. Our formulation can model
all these task types. If task uk only needs data, γk = 0,
δk = 0 while αk > 0. If uk only needs general computation
without specific service or data, γk > 0, δk > 0 while
αk = 0.

Assume that task uk is dispatched to edge server vi, i.e.,
ytk,i = 1, then its associated costs are defined as follows.

Accessing cost of resources: The transmission cost of
input data and needed service for task uk is defined as
Cinputk,i =

∑O
j=1 ωk,j · σ̄tj,i.

Computation cost:. Let ξk(z) be the function to define
CPU cycles to process task uk with the input data/service
size z. So the computation cost of task uk processed in edge
server vi is defined as Ccompk,i =

∑O
j=1 ωk,j ·

ξk(oj)
fi

.
Transmission cost of output: The total transmission cost

of output data for task uk from edge server vi to arriving
edge server Ψk is Coutputk,i = f(βk, vi,Ψk).

Therefore, the completion cost of task uk is calculated as

ςtk,i = Cinputk,i + Ccompk,i + Coutputk,i . (14)

Recall each task has a benefit ρk. We then can formulate
the task dispatching decision as an optimization problem

Authorized licensed use limited to: Wuhan University. Downloaded on September 16,2022 at 06:29:33 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3113605, IEEE
Transactions on Cloud Computing

5

whose goal is to maximize the total task utility if task uk is
running on server vi at t.

max
∑
k

∑
i

ytk,i(ρk − ςtk,i)

s.t.
∑
k

ytk,iς
t
k,i ≤ τ, ∀i

ytk,iαk ≤ stti · cci, ∀i, k
ytk,iγk ≤ stti · fi, ∀i.k
ytk,iδk ≤ stti ·mi, ∀i, k∑
i

ytk,i ≤ 1, ∀k

ztk,i ∈ {0, 1}, ∀k, ∀i
i ∈ (1, 2, . . . , N), k ∈ (1, 2, . . . , Z)

(15)

Note that the constraint of
∑
k y

t
k,iς

t
k,i ≤ τ makes sure that

the dispatched tasks can be completed within the duration
of a time scale τ .

2.4 Joint Optimization Problem
We now consider a joint resource placement and task dis-
patching problem as a nonlinear program problem:

max
∑
k

∑
i

ytk,i(ρk − ςtk,i)−
∑
j

ωj · νtj (16)

s.t.
∑
j

xtj,ioj + ytk,iαk ≤ stti · cci, ∀i, k (17)

xtj,iζj ≤ stti · fi, ∀i, j (18)

xtj,iηj ≤ stti ·mi, ∀i, j (19)

ytk,iγk ≤ stti · fi, ∀i, k (20)

ytk,iδk ≤ stti ·mi, ∀i, k (21)∑
i

ytk,i ≤ 1, ∀k (22)∑
k

ytk,iς
t
k,i ≤ τ, ∀i (23)

xtj,i ∈ {0, 1}, ytk,i ∈ {0, 1} (24)

i ∈ (1, . . . , N), j ∈ (1, . . . , O), (25)
k ∈ (1, . . . , Z). (26)

Since there is a nonlinear term inside ytk,iς
t
k,i, the overall

problem is a nonlinear integer program problem which
is known difficult to solve due to its high computational
complexity.

3 TWO-STAGE OPTIMIZATION METHOD

To solving the challenging joint optimization problem, we
propose a two-stage algorithm to decompose the problem
and solve it via multiple iterations. One of the advantages
of this proposed two-stage method, it can be easily adopt to
perform the joint optimization across different timescales.

3.1 Two-Stage Optimization
The main idea of this algorithm is as follows. First, we
randomly generate a feasible task dispatching decision yt,0k,i,
then formulate and solve the resource placement problem
(obtaining xt,1j,i ) to maximize the total task utilities. Next,

Algorithm 1 Two Stages Optimization Method
Input: Status of all servers V and the network G, re-
sources Q and tasks U for time t.
Output: Resource placement and task dispatching deci-
sions xtj,i and ytk,i.

1: Initialize max itr, max occur, bound val
2: Generate an random initial task dispatching decision
yt,0k,i which is feasible (i.e., satisfying constraints in P2)

3: ι = 1 and count num = 0;
4: repeat
5: Stage 1: Calculate xt,ιj,i by solving P1 with yt,ι−1

k,i as the
fixed task dispatching

6: Stage 2: Calculate yt,ιk,i by solving P2 with xt,lj,i as the
fixed resource placement, let obj val be the achieved
objective value (total utility from tasks)

7: if obj val > bound val then
8: bound val = obj val; count num = 1
9: xtj,i = xt,ιj,i; y

t
k,i = yt,ιk,i

10: else if obj val = bound val then
11: count num = count num+ 1
12: ι = ι+ 1
13: until count num = max occur or ι = max itr
14: return xtj,i and ytk,i

we take the resource placement decision xt,1j,i as input, and
formulate and solve the task dispatching problem (obtaining
yt,1k,i). This finishes the first round of two-stage optimization,
then we repeat the two steps, i.e., iteratively taking the
latest resource placement or task dispatching decision as an
input to optimize the other decision within the overall joint
problem, until it satisfies a specific condition.

2-Stage Decomposition: The detail of decomposition of
ι-th round is as follows.

Stage 1: Solving resource placement problem with fixed task
dispatching. In this stage, our goal is to determine resource
placement for each data and service in order to maximize
the total task utilities with the last task dispatching decision
yt,ι−1
k,i . The problem can be formulated as P1:

max
∑
k

∑
i

yt,ι−1
k,i (ρk − ςtk,i)−

∑
j

%tj

s.t. (17), (18), (19), (23), (24), (25), (26)

(27)

The solution of this problem is xt,ιj,i.
Stage 2: Solving task dispatching problem with fixed resource

placement. In this stage, we take the resource placement deci-
sion xt,ιj,i generated in the first stage as input and determine
the task dispatching for each task yt,ιk,i to maximize the total
utility. The problem can be formulated as P2:

max
∑
k

∑
i

yt,ιk,i(ρk − ς
t
k,i)−

∑
j

%tj

s.t. (17), (20)− (26)

(28)

The solution of this stage is yt,ιk,i.
After the decomposition, in each round, both P1 and P2

are linear integer programming problems, and thus can be
solved by the classical linear programming methods (e.g.,
branch and bound, dynamic programming).
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Overall Iteration, Initialization and Termination: Al-
gorithm 1 shows the overall algorithm. Initially, a feasible
random task dispatching yt,0k,i is generated (Line 2). Then,
in each round (Lines 5-12), we solve the P1 and P2 with
the previous decision as the input. The resource placement
and task dispatching decisions (xt,ιj,i and yt,ιk,i) are optimized
iteratively. Finally, the iteration terminates (Line 13) when
either of the following metric met: (1) the number of it-
eration reach certain threshold max itr, or (2) the current
objective value (total task utility) has occurred more than
a specified threshold max occur. These two thresholds can
be set via experiments. Obviously, larger threshold values
lead to longer iteration but improved results. In Section 5,
we will show the improvement is limited after certain round
of iterations.

3.2 Joint Optimization across Two Timescales

So far, we only discuss our two-stage algorithm in a one-
time slice. In edge computing systems, the workload (i.e.,
computing tasks) and the resources (e.g. data or services)
to serve such workload need to be managed on different
timescales [24], [25]. Usually the computing tasks could be
distributed more frequently at a fast timescale in the edge
network, while the resource placement could be adjusted
(such as redeploying or migrating services) less frequently
on a slow timescale. Compared with the single timescale
method, multi-timescale solutions [24], [25] can achieve bet-
ter performance with more flexible management, thus gain
significant attractions recently from the research community.

Our proposed two-stage algorithm can be easily to adopt
to a two-timescale solution. As illustrated in Fig. 2, we
can make task dispatching decisions along with the fast
timescale (at the starting point of each time slot) and make
resource placement decisions along with the slow timescale
(at the starting point of each time frame). Here, we assume
that each time frame includes χ time slots. More specifically,
at the beginning of each time frame, we run our proposed
iterative two-stage algorithm (Algorithm 1), and at the be-
ginning of each time slot (except for the first time slot), we
only solving the Stage 2 problem (P2) where the resource
placement is fixed. By doing so, not only we can handle
diverse dynamics among workload and resources, but also
the running time of overall algorithm is reduced since the
iterative algorithm is only performed once at each time
frame and solving P2 at each time slot is relevantly simpler.
Thus, it leads to greater flexibility with more cost savings.
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Fig. 2. Illustration of joint resource placement and task dispatching
across two timescales.
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Fig. 3. The architecture of Actor-Critic RL framework.

4 REINFORCEMENT LEARNING BASED METHOD

In this section, we consider an alternative method to solve
the joint optimization by leveraging the emerging deep
reinforcement learning technique. Reinforcement learning
(RL) has a great capability to attack complex optimization
problems in a dynamic system. The characteristic of RL
framework is that the decision is made by RL agents and the
feedback generated by the environment is used to improve
the decision of the agent. There are three key elements in
the RL frameworks: state, action and reward.

Generally, RL algorithms can be classified as the cate-
gory of value-based and policy-based methods. Value-based
RL methods (e.g. Q-learning, Deep Q-network (DQN) [31],
Double DQN [32]) can select and evaluate the optimal value
function with lower variance. The value function measures
the goodness of the state (state-value) or how good is to per-
form an action from the given state (action-value). However,
it is difficult for value-based methods to handle the problem
of continuous action spaces. If it calculates the value in an
infinite number of actions, it will be time-consuming.

On the other hand, policy-based methods, such as policy
gradient [29], are effective in high-dimensional or continu-
ous action spaces. It can learn stochastic policies and has
better convergence properties. The main idea is to able
to determine at a state which action to take in order to
maximize the reward. The way to achieve this objective
is to find tune a vector of parameters (θ) so as to select
the best action to take for policy π. The policy π is the
probability of taking action a when at state s and the
parameters are θ. There are some disadvantages for policy-
based methods: (1) it typically converges to a local rather
than global optimum; (2) evaluating a policy is typically
inefficient and high variance.

Actor-Critic RL method [33] is proposed to combine
the basic idea of value-based and policy-based algorithms.
The actor uses policy-based methods to select the action
while the critic uses value-based methods. As shown in
Fig.3, the actor takes the state as input and outputs the
best action. It essentially controls how the agent behaves
by learning the optimal policy (policy-based). The critic, on
the other hand, evaluates the action by computing the value
function (value based). And the feedback (such as error) will
tell the actor how good its action was and how it should
adjust. However, since the actor-critic method involves two
neural networks, each time the parameters are updated in a
continuous state and there is a correlation before and after
each parameter update, which causes the neural network
to only look at the problem one-sidedly, and even causes
the neural network to learn nothing. To avoid such problem
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in our problem, we leverage Deep Deterministic Policy
Gradient (DDPG) RL technique [28], [29] to solve the joint
optimization problem.

4.1 RL Framework: State, Action and Reward

We first define the specific state vector, action vector and
reward for our system model to enable the proposed RF
framework.

State Vector: At each step ι, the agent collects the edge
network information and parameters defined below to form
the system state.
• M : the number of links among edge servers.
• N : the number of edge servers.
• bl: available network bandwidth of each link.
• cri: available computing resources (e.g., storage, CPU,

memory) of each edge server.
Let SS be the state space, the system state ssι ∈ SS at step
ι can be defined as

ssι = {b1, b2, · · · , bM , cr1, cr2, · · · , crN}ι.

Action Vector: In terms of action vector, the agent will
make decisions for both resource placement and task dis-
patching. The decision mainly consist of where to place
resources and where to dispatch tasks. Therefore, the action
vector includes two parts.
• RPj = {rpj,1, rpj,2, · · · , rpj,N}: resource placement of

each external resource qj (data, service) .
• TDk = {tdk,1, tdk,2, · · · , tdk,N}: dispatching target of

each task uk (released by mobile user).
Let AA be the action space, the system action aaι ∈ AA at
step ι can be defined as

aaι = {RP1, RP2, · · · , RPR, TD1, TD2, · · · , TDZ}ι.

Reward: For each step, the agent will get the reward
rrι from the environment after taking a possible action aaι.
Generally, the reward function is related to the objective
function in the optimization problem. Fortunately, the ob-
jective of our optimization problem is to maximize the total
utility of all tasks, so the award of RL agent is to set as
following.

rrι =
∑
k

∑
i

(ρk − ςtk,i)−
∑
j

%tj . (29)

Notice that the reward rrι can be obtained given the agent’s
action aaι, which includes the solution of both resource
placement and task dispatching, and the environment.

4.2 DDPG RL Algorithm

The main goal of RL algorithm is to tune the learning
model’s parameters (θ) so as to select the best action aa to
take based on the given state. We adopt Deep Deterministic
Policy Gradient (DDPG) technique [28], [29] to perform the
RL. Actually, DDPG integrates the essential idea of the actor-
critic and DQN. DQN uses a replay memory and two sets
of neural networks with the same structure but different pa-
rameter update frequencies, which can effectively promote
learning. DDPG has a similar idea but the neural network is
a bit complicated. As aforementioned, compared with other
RL methods, policy gradient can be used to filter actions
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Fig. 4. The architecture of DDPG RL Algorithm. The circled numbers are
the corresponding steps.

in continuous action spaces. Moreover, the screening is per-
formed randomly based on the learned action distribution.
However, the screening in DDPG is deterministic but not
random. In terms of the architecture of neural networks in
DDPG, it is similar to that of Actor-Critic, both need the
policy-based neural networks and the value-based neural
networks as shown in Fig. 4. Each kind of neural network
also includes two types of neural networks: the evaluation
network and the target network. The target networks are
time-delayed copies of their original networks that slowly
track the learned networks. Using these target networks
greatly improve stability in learning.

Algorithm 2 is the detail of DDPG algorithm. The main
steps of DDPG algorithm (with corresponding lines in Al-
gorithm 2) are as follows.

1) Initialize the system and environment based on the
edge network G, and set of external resource Q and set
of task U as well as other network information (Line 1).

2) Initialize Actor evaluation network µ(s|θµ) and target
network µ′(s|θµ′

) as well as Critic evaluation network
Q(ss, aa|θQ) and target network Q′(ss, aa|θQ′

), where
θµ and θQ are evaluation network parameters, θµ

′
and

θQ
′

are target network parameters (Lines 2-3).
3) Initialize replay buffer D, the maximum number of

episodes max ep and the maximum number of steps
per episode max st (Line 4). D is used to sample
experience to update neural network parameters.

4) At the beginning of each episode, initialize the random
exploration noise and generate the initial state ss1

(Lines 5-7).
5) For each step ι, the actor selects an action aaι based on

the current policy and random noise (Lines 8-9).
6) The environment executes action aaι and get the re-

ward rrι and observe new state ssι+1. Then it stores the
transition (ssι, aaι, rrι, ssι+1) to D. At the same time,
the actor send the action to critic network (Lines 10-12).

7) Randomly sample a batch of data (ssi, aai, rri, ssi+1)
from D. Then calculate the expected value/reward zi
(Lines 13-14).

8) Update Critic and Actor evaluation network with the
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Algorithm 2 Deep Deterministic Policy Gradient (DDPG) Method
Input: The edge network G(V,E), set of external resource Q, set of task U . Remained storage capacity cci, CPU frequency
fi, memory capacity mi of each edge server. Propagation delay pj , network bandwidth bj of each link. Storage size oj ,
download cost $j , CPU requirement ζj and memory requirement ηj of each resource.

1: Initialize the environment with all input information.
2: Initialize Actor and Critic evaluation network µ(s|θµ) and Q(ss, aa|θQ) with parameters θµ and θQ, respectively.
3: Initialize Actor and Critic target network µ′(s|θµ′

) and Q′(ss, aa|θQ′
) with parameters θµ

′ ← θµ and θQ
′ ← θQ.

4: Initialize empty replay buffer D, the maximum episodes max ep and the maximum steps per episode max st.
5: for episode = 1, episode < max ep do
6: Initialize the random exploration noise for action.
7: Generate the initial observation state ss1 from environment.
8: for each step ι = 1, ι < max st do
9: Calculate action aaι based on the current policy and random noise.

10: Execute action aaι in the environment and observe reward rrι and new state ssι+1.
11: Store transition (ssι, aaι, rrι, ssι+1) to replay buffer D.
12: Send the action from Actor evaluation and target network to Critic evaluation and target network, respectively.
13: Randomly sample a batch of transitions (ssi, aai, rri, ssi+1) from D to Actor and Critic network.
14: Calculate zi = rri + γQ′(ssi+1, µ

′(ssi+1|θµ
′
)|θQ′

), where γ is the discount factor for future rewards.
15: Update Critic evaluation network by minimizing the loss: 1

K

∑
i(zi −Q(ssi, aai|θQ))2, where K is the number of

sampled data from D.
16: Send gradient parameters to Actor evaluation network.
17: Update Actor evaluation network by using the sampled policy gradient:

1

K

∑
i

∇aaQ(ss, aa|θQ)|ss=ssi,aa=µ(ssi)∇θµµ(ss|θµ)|ssi .

18: Update Actor and Critic target network by using the evaluation network arguments:
θµ

′
← εθµ + (1− ε)θµ

′
, θQ

′
← εθQ + (1− ε)θQ

′
.

19: end for
20: end for

sampled data (Lines 15-17).
9) Update Actor and Critic target network with the rate ε

(Lines 18).
10) This process is done until it reaches the maximum

number of episode.
Fig. 4 also shows these steps with the circled numbers.
4.3 RL Method across Two Timescales
While RL technique can handle network dynamics, it is also
flexible to deal with the complexity in multiple timescales
scenario. We now further extend our proposed DDPG to
work across two timescales. There are two different ways
to extend the proposed DDPG method. A straightforward
way is to build another separate DDPG for task dispatch-
ing problem P2, and run both DDPG models in different
timescales (joint one for each time frame and P2 one for
each time slot). The other way is to use the same DDPG
model, but force the action policy to not adjust the resource
placement during the fast timescale. With either way, the
agent can still learn the best decision based on the environ-
ment and the current state vector. In this paper, we adopt
the first method, as shown in Fig. 5. We use two DDPG
networks, one for resource placement (RP DDPG) and the
other for task dispatching (TD DDPG). Resource placement
(RP DDPG) is performed every specific time frame while
task dispatching (TD DDPG) is executed every time slot. In
each time slot, the environment sends current network state
(available network bandwidth and computing resources) to
task dispatching agent (TD agent), the TD agent will out-
put the task dispatching decision to the environment. Our
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Fig. 5. Resource placement and task dispatching via deep reinforcement
learning across two timescales with two DDPG models.

experimental results (Section 5.5) show that by leveraging
two DDPG agents, the proposed RL method can handle the
system dynamic and manage the resource/task effectively.
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5 PERFORMANCE EVALUATION

This section reports the results from our trace-based simu-
lations to evaluate our proposed strategies.

5.1 Simulation Setup
In our simulation, we randomly construct edge networks G
with 10 to 50 edge servers whose degree satisfies a bino-
mial distribution. The propagation and bandwidth for each
network link are randomly generated. Each edge server has
a limited storage capacity ranges from 512MB to 1, 024MB.
To simulate the CPU, memory and status of edge servers,
we make use of the Google Cluster Data (ClusterData 2011
traces) [34]. For the external resources (data and services),
we randomly generate 100 data items and 20 services where
the size of each resource are from 10MB to 200MB. To
simulate the tasks from mobile users, we leverage the user
mobility data from the CRAWDAD dataset kaist/wibro [35],
developed by a Korean Team, which collected the CBR and
VoIP traffic from the WiBro network in Seoul, Korea. We
randomly sample from this dataset to generate the random
tasks from mobile user to perform our simulation. We run
our experiments on a DELL Precision 3630 Tower with i7-
9700 CPU, 16GB RAM and NVIDIA GeForce RTX 2060
GPU. For our proposed RL based method, the detail of
hyper parameters configuration is reported in Table 2. The
parameters are initialized by general value that used in most
RL experiments. We test multiple values for each parameter
and select the value that has better performance.

We compare our proposed Two Stage Optimization
(OPT) and Deep Reinforcement Learning (RL) solutions
with two baselines: a random strategy and a greedy strategy.
• Random (RAND). At each time slice, it randomly gen-

erates a feasible resource placement and task dispatch-
ing decision which satisfies those constraints.

• Greedy (GRD). It greedily determines its resource
placement and task dispatching decision to maximize
total utility in each round. It gives the priority to
resources/tasks based on their popularity/benefits.
Specifically, GRD first sorts resources based on their
popularity and processes them from the most popu-
lar one. It iteratively selects an edge server to place
this resource which maximizes the total utility in each
round. Similarly, for tasking dispatching, GRD sorts all
tasks based on their benefits and processes the most
beneficial task first. Likewise, it greedily selects an edge
server to dispatch the task to get the maximal task
utility in each round iteratively.

We evaluate the performance of all methods based on
average total utility (i.e., the objective function in our formu-
lated optimization problems). Obviously, the larger utility
value the better resource placement and task dispatching
performance. All parameters required to calculate the ob-
jective function (such as network topology, bandwidth, task
requirements, server capacity, download cost) are known to
all methods as inputs at each time unit. For RL methods,
those are used to calculate the reward at each time unit.

5.2 Overall Performance
In the first set of simulations, we test all four methods within
a fixed time period (in the single timescale) over different
numbers of tasks or edge servers.

TABLE 2
RL Hyper Parameters

Parameter Value Parameter Value
Max Episode 100 Reward Discount 0.9

Max Step per Episode 3,000 Batch Size 32
Learning Max Episode 10 Soft Replacement 0.01

Actor Learning rate 0.0001 Replay buffer Capacity 10,000
Critic Learning rate 0.0002
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Fig. 6. Overall performance of four methods in one timescale:
Comparison of proposed solutions (OPT, RL) with Random (RAND) and
Greedy (GRD) strategy with different numbers of tasks or edge servers.

Fig. 6(a) displays the performances for the four solutions
under different number of task requests (from 10 to 50
in each time unit). The number of edge servers is fixed
at 30. It is obvious to see that the average total benefits
of four solutions increase as the number of task requests
increases. Our proposed two stage optimization algorithm
(OPT) and Reinforcement Learning (RL) outperform the
other two algorithms (RAND and GRD) in all cases. In
addition, when the number of requests is low (e.g. 10 or 20),
the difference of average total utilities between OPT and RL
is small. However, as the number of requests increases, the
difference becomes larger. So, in the real scenario, we can
select either OPT or RL if the number of requests is low. If
the number of request is large, we prefer to use RL to make
the decision.

We then fix the number of tasks at 30 and investigate
the impact of the number of edge servers (changing from
10 to 50). As shown in Fig. 6(b), the average total utility of
RAND increases in the beginning and then less varies as
the number of edge servers increases. For other three solu-
tions, OPT and GRD vary a little as the number of servers
increases while RL keeps stable all of the way. Overall, the
performance of most of the solutions are relevantly stable,
especially RL. For all cases, RL and OPT perform much
better than GRD and RAND. This once again confirms the
advantage of our two proposed methods.

5.3 Running Time and Convergence of OPT

We first investigate the running time and convergence of
our proposed two-stage optimization (OPT) method.

Fig. 7(a) shows the running time of OPT, GRD and
RAND at different time slots. The running time is defined as
the time duration when the algorithm is executing. We can
find that GRD and RAND has the least running time since
their placement/dispatching can be done in a polynomial
time. Our OPT method spends more time to solve the
challenging optimization problem, but remember that it
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Fig. 7. Running time and convergence of OPT: (a) Comparison of
running time (OPT vs RAND/GRD); (b) Convergence of OPT.

generates much better solution (better total utilities) than
GRD/RAND as shown in Fig. 6.

Recall that our two-stage optimization algorithm (Algo-
rithm 1) iteratively optimizes the objective value under a
max iteration. Fig. 7(b) displays the total task utility per slot
under different iterations. It is clear that with more iterations
the overall trend of performance increases, even though
there is an drop in early iteration and some variety in each
iteration. Therefore, it is necessary to select an appropriate
max iteration (max itr) to achieve a decent performance
(total utility). It is a trade-off between the max iteration and
the running time as well as the optimization objective value
since more iterations cost more running time.

5.4 OPT across Two Timescales with Dynamic Status

We further investigate our proposed methods across two
timescales where the joint resource placement and task
dispatching decisions are made at different timescales (time
frame vs time slot). Here we mainly focus on our two-stage
optimization solution (OPT).

In the first set of experiments, we perform our proposed
OPT method against RAND/GRD in three different scenar-
ios: (1) Slow Timescale: all methods perform joint resource
placement and task dispatching at the beginning of each
time frame; (2) Fast Timescale: all methods perform place-
ment and dispatching at the beginning of each time slot;
(3) Two Timescales: all methods perform task dispatching
in each time slot while joint resource placement and task
dispatching performing only at the beginning of each time
frame. In this set of experiments, each time frame has 5
time slots (i.e., χ = 5), and we fix the number of request
per time frame at 30 and the number of edge server at
30. Fig. 8(a) displays the performances of three methods
(OPT, RAND, GRD) under three scenarios. First, our pro-
posed two-stage OPT method achieve better performance
than RAND and GRD in all setting. Second, for all three
solutions, running at slow timescale achieves larger util-
ities than running at fast timescale. This is mainly due
to running at slow timescale takes the advantage having
better global information over longer time duration. In
addition, fast timescale solution also suffers from frequent
resource placement changes which might be costly. Third,
when the solutions are performed across two timescales,
the performances can be further improved. This might due
to performing task dispatching at the time slot can find
sufficient server to perform the task and quickly release the
server for other tasks. Overall, the results from this set show
that multi-timescale solution can achieve better performance
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Fig. 8. Performance of OPT across two timescales with dynamic
status: (a) different methods at fast, slow or two timescales; (b) with
dynamic status from real-world traces.

compared with the single timescale method, which echos
the similar discovery from [24], [25] (though the studied
problems and network models are different).

Finally, we evaluate our proposed two-timescale solu-
tions over edge servers with dynamic status by leverag-
ing the status trace-driven data from the Google Clus-
ter Data (ClusterData 2011 traces) [34]. We use the trace
data to generate the server status at different time slots.
Other parameters are similar to previous experiments. For
two-timescale solutions, we use different combinations of
OPT/GRD/RAND to solve data placement and task dis-
patching problems respectively. As shown in Fig. 8(b), there
are nine combinations in total. For example, OPT+RAND
means optimization based method is used for data place-
ment, while task dispatching is done randomly. Fig. 8(b)
reports the results of these methods under three different
scenarios: (1) Always On: assume that all edge servers are
always running and available for serving tasks; (2) Dynamic
Status: the status of the edge node varies along with the
time slot, while a server is down at a time slot no task can
be dispatched to it; (3) Static Status: our method completely
ignore the server status during solving the data placement
and task dispatching. Obviously, all combinations with dy-
namic status have lower total utility than those of always
on, since some server may be unavailable in certain time
slots. In addition, if ignoring the status, the performance
(of static status) will be significantly reduced, since the
dispatched tasks may not be completed due to the server is
unavailable. Clearly, our solutions which considers dynamic
status can achieve a comparative performance to the case
where every server is on. Last, among all nine combinations,
using our optimization based solution for both resource
placement and task dispatching across two-timescales has
higher performance than other combinations. This indirectly
illustrates the effectiveness of the two-stage algorithm under
two-timescales to handle real dynamics in edge computing,
which is the major contribution of this paper.

5.5 Performance and Convergence of RL

In this subsection, we study the performance and con-
vergence of our proposed deep RL methods. The default
number of edge servers is set to 10.

Convergence performance of RL under single
timescale and different timescales: Fig. 9(a) displays the
convergence result of our RL solutions that jointly deter-
mine the resource placement and task dispatching decision
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Fig. 9. Convergence of RL under different timescales: Running joint
resource placement and task dispatching under single timescale and
across two timescales.
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Fig. 10. Convergence of resource placement and task dispatching:
Training resource placement and task dispatching respectively.

in a single timescale. As we can see, the reward gets higher
as the number of episodes increases and it converges at
around the 80th episode. On the other hand, Fig. 9(b)
shows the convergence of our RL solutions across two
timescales where makes the task dispatching decision in
the fast timescale and the resource placement decision in
the slow timescale. We can find that the reward drops in
the beginning and then increases when the training episode
increases. We also observe that the reward in Fig. 9(b) is
higher than that in Fig. 9(a). This further confirms the benefit
of making resource placement and task dispatching across
two timescales.

Convergence performance of resource placement and
task dispatching: We further show the convergence result
of resource placement and task dispatching, respectively.
We first fix the task dispatching decision in each episode
and make the resource placement decision. Similarly, we
then fix the resource placement decision in each episode and
make the task dispatching decision. As shown in Fig. 10,
the results of resource placement and task dispatching are
similar since they use the same RL model and can both
converge while working on different optimization decisions.
The number of edge server is not large and the resource
placement problem is less complex than the task dispatching
one, thus RL can learn faster in resource placement. The task
dispatching initially has larger variation since the tasks are
more sensitive to the user mobility. With more training data,
the convergence becomes better.

Convergence performance under different batch
sizes/learning rates: Finally, we investigate the convergence
of our proposed deep RL method with different batch sizes
and learning rates. Fig. 11(a) shows the performance of RL
with a batch size at 32, 64 and 128. The batch size is used
to determine the number of experience samples that need
to be trained each step. We can find that the result of batch
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Fig. 11. Convergence of RL under different batch size and learning
rate: Running RL under 20 to 30 episodes with 3, 000 steps per episode.

size at 32 gets higher rewards and converges earlier than
the other two scenarios. Fig. 11(b) shows the performance
of RL at different learning rates ε, which is used to control
the update speed of the weight in the neural network. Here,
we use different rates for the actor and critic (denoted by
LC A and LC C respectively). Obviously, different learning
rates will lead to different convergence results so we have
to select an appropriate learning rate for our RL model.

6 RELATED WORK

In this section, we briefly review some related works.

6.1 Resource Placement/Management
In this paper, we consider both data placement and service
placement as resource placement in edge computing. Note
that there are other types of resource management problems
in edge computing, such as virtual network function place-
ment [36], [37], virtual machine placement [38], [39], and
cloudlet placement [23], [40], [41]. Next, we briefly review
existing works on data placement and service placement.

Data placement has been an important topic in dis-
tributed database/system [42], [43], peer-to-peer network-
ing [44], [45], content delivery network [46], and cloud com-
puting [47], [48]. While similar to all distributed systems,
edge computing has its own characteristics [1], thus brings
new data placement problems. Shao et al. [4] proposed a
data replica placement strategy for processing the data-
intensive IoT workflows in edge system which aims to min-
imize the data access costs while meeting the workflow’s
deadline constraint. The problem is modeled as a 0–1 integer
programming problem and solved by an intelligent swarm
optimization. Similarly, Lin et al. [5] also proposed a self-
adaptive discrete particle swarm optimization algorithm
to optimize the data transmission time when placing data
for a scientific workflow in edge computing. Li et al. [10]
investigated a joint optimization of data placement and task
scheduling in edge computing to reduce the computation
delay and response time. Their formulated optimization
considers the value, transmission cost, and replacement
cost of data blocks, which is then solved by a tabu search
algorithm. Breitbach et al. [11] have also studied both data
placement and task placement in edge computing by con-
sidering multiple context dimensions. For its data place-
ment part, the proposed data management scheme adopts
a context-aware replication, where the parameters of the
replication strategy is tuned based on context information
(such as data size, remaining storage, stability, application).
Huang et al. [49] have studied caching fairness for data
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sharing in edge computing environments. They formulate
the caching fairness problem, where fairness metrics take
resources and wireless contention into consideration, and
propose both approximation and distributed algorithms.
Xie et al. [6] also studied the data-sharing problem and
proposed a coordinate-based data indexing mechanism to
enable the efficient data sharing in edge computing. It
maps both switches and data indexes into a virtual space
with associated coordinates, and then the index servers are
selected for each data based on the virtual coordinates. Xie
et al. [7] further extended their virtual-space method to
handle data placement and retrieval in edge computing with
an enhancement based on centrodial Voronoi tesselation to
handle load balance among edge servers. Similarly, Wei
et al. [8], [9] proposed another virtual-space based data
placement strategy which takes the data popularity of data
items into consideration during the virtual-space mapping,
data placement and retrieval. There are solutions [50] for
data management issues in edge computing as well.

Similar to data placement, service and resource place-
ment in edge computing has been studied as well. Ouyang
et al. [12] proposed an adaptive user-managed service place-
ment algorithm to jointly optimize the latency and ser-
vice migration cost. By formulating the service placement
problem as a contextual Multi-armed Bandit problem, they
proposed a Thompson-sampling based online learning algo-
rithm to explore make adaptive service placement decisions.
Xu et al. [13] studied the service caching in mobile edge
clouds with multiple service providers completing for both
computation and bandwidth resources, and proposed a
distributed and stable game-theoretical caching mechanism
for resource sharing among the network service providers.
Pasteris et al. [14] also studied a multiple-service placement
problem in a heterogeneous edge system and proposed
an approximation algorithm placing multiple services to
maximize the total reward. Meskar and Liang [15] pro-
posed a resource allocation rule retaining fairness proper-
ties among multiple access points, while Zhang et al. [16]
proposed a decentralized multi-provider resource allocation
scheme to maximize the overall benefit of all providers.
Resource placement has also been considered jointly with
other design issues in edge networking and computing. For
example, Kim et al. [17] designed a joint optimization of
wireless MIMO signal design and network resource alloca-
tion to maximize energy efficiency in wireless D2D edge
computing. Eshraghi and Liang [18] considered the joint
optimization of computing/communication resource allo-
cation and offloading decision of uncertain tasks in mobile
edge networks.

6.2 Task Offloading/Dispatching
Task dispatching, as known as computation offloading [51],
is also a critical problem in edge computing, and has been
studied recently. In many cases, it is jointly considered
with data/resource placement. For example, Breitbach et al.
[11] also considered task placement in their context-aware
solution, where task scheduler allocates tasks according to
the current context and observes the state during runtime.
Bi et al. [19] jointly studied a task offloading, service caching
and resource allocation problem in a single edge server that
assists a mobile user to perform a sequence of computation

tasks. They formulated it as a mixed integer nonlinear
programming (MINLP), and then solved it by separately
optimizing the resource allocation and transforming the
problem to integer linear program. Xu et al. [20] proposed
an online algorithm to jointly optimize dynamic service
caching and task offloading in edge-enabled dense cellular
networks. Their solution is based on Lyapunov optimization
and Gibbs sampling without knowing future information.
Similarly, Poularakis et al. [21] investigated the joint service
placement and request routing problem in edge-enabled
multi-cell networks, and proposed a bi-criteria algorithm
with randomized rounding technique that achieves approx-
imation guarantees while violating the resource constraints
in a bounded way. Ma et al. [22] studied cooperation among
edge servers and investigated cooperative service caching
and workload scheduling in mobile edge computing en-
vironment. They formulated the problem as MINLP and
solved it by an iterative algorithm based on Gibbs sampling
to achieve near-optimal performance. Yang et al. [23] pro-
posed a Benders decomposition-based algorithm to jointly
solve the cloudlet placement and task allocation problem
while minimizing the total energy consumption.

However, most of these works consider a kind of joint
optimization at a single timescale, thus may not handle the
dynamic among tasks, resources, and computation facilities
in the edge computing environment. Recently, Farhadi et
al. [24] studied service placement and request scheduling
problem in edge cloud environment for data-intensive ap-
plications and proposed a two-timescales framework to de-
termine the near-optimal decision under specific constraints.
You et al. [25] also studied a joint resource provision and
workload distribution problem in mobile edge network.
They formulated the problem as a nonlinear mixed-integer
program to minimize the long-term cost, and proposed
online learning based algorithms to solve the problem in
two timescales. Our work is inspired by these works, but
we consider different joint optimization with different net-
work and edge settings. In addition, we also leverage deep
reinforcement learning to solve the joint optimization.

6.3 Deep Reinforcement Learning
Reinforcement learning is one of the basic machine learning
paradigms, which has been well-studied and widely applied
in many fields. Recent advances in deep reinforcement
learning (DRL) [28], [29], [31]–[33] have further enhanced
its great capability to attack complex optimization problems
in real dynamic systems, including edge computing.

Chen et al. [26] have studied the computation offloading
problem in a dynamic time-varying network, and proposed
a DQN-based solution to optimally offload the compu-
tation to base stations to maximize the long-term utility
performance. Li et al. [52] considered the joint offload-
ing and resource allocation in a multi-user edge system,
where multiple users can perform computation offloading
via wireless channels to an edge server. They proposed
a DRL based scheme to tackle the optimization. Huang
et al. [53] considered a binary task offloading in wireless
edge system, and proposed a DRL based online offloading
framework to adapts task offloading decisions and wireless
resource allocations to the time-varying wireless channel
conditions. Wang et al. [27] also proposed a DRL based
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resource allocation approach to adaptively allocate comput-
ing and network resources to reduce the average service
time and balance resource usages under dynamic edge
network. Ning et al. [54] solved the joint task scheduling and
resource allocation optimization in vehicular edge system
to maximize users’ Quality of Experience (QoE) by using a
two-sided matching scheme for task scheduling and a DRL
approach for resource allocation respectively. Nath and Wu
[55] considered the computation offloading and resource
allocation in a cache-assisted edge system, and proposed a
DDPG-based scheduling policy to minimize the long-term
average cost including energy consumption, total delays
and resource accessing cost. Meanwhile, Rahman et al. [56]
also studied the joint problem of mode selection, resource
allocation, and power allocation to minimize the total delay
in the fog radio access networks using DRL methods. While
many of these works adopt DRL to successfully optimize
task scheduling/offloading and/or resource allocation, they
usually use one DRL agent to learn the dynamic. In our
work, our DRL method has been extended to work across
two timescales.

7 CONCLUSION

In this study, we have investigated a joint resource place-
ment and task dispatching problem in edge computing
across different timescales. We proposed a two-stage opti-
mization algorithm and a deep RL based algorithm to solve
this joint optimization within a dynamic edge environment.
Both methods can handle the variety of dynamics at two
different timescales. Our simulation results showed that
(1) both proposed methods perform much better than ran-
dom and greedy algorithms; (2) the advantage of perform-
ing resource placement and task dispatching in different
timescales is not only to reduce the placement cost but also
does not require much future prediction of the task. The
two proposed solutions have their own advantages. On one
hand, RL needs more time to train the agent’s model while
OPT directly solves the optimization problem. On the other
hand, RL is more efficient to handle dynamic environment
and scales well with larger number of requests/servers.

In future, we plan to further enhance the proposed
methods by also considering how to handle and recover
from sudden server failure events, and apply the proposed
ideas to other joint optimization issues in edge computing
and beyond.
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