
1

MPMoE: Memory Efficient MoE for Pre-trained
Models with Adaptive Pipeline Parallelism

Zheng Zhang, Yaqi Xia, Hulin Wang, Donglin Yang, Chuang Hu, Xiaobo Zhou, Senior Member, IEEE ,
Dazhao Cheng, Senior Member, IEEE ,

Abstract—In recent years, the Mixture-of-Experts (MoE) technique has gained widespread popularity as a means to scale pre-
trained models to exceptionally large sizes. Dynamic activation of experts allows for conditional computation, increasing the number of
parameters of neural networks, which is critical for absorbing the vast amounts of knowledge available in many deep learning areas.
However, despite the existing system and algorithm optimizations, there are significant challenges to be tackled when it comes to
the inefficiencies of communication and memory consumption. In this paper, we present the design and implementation of MPMoE,
a high-performance library that accelerates MoE training with adaptive and memory-efficient pipeline parallelism. Inspired by that the
MoE training procedure can be divided into multiple independent sub-stages. We design a pipeline parallelism method for reducing
communication latency by overlapping with computation operations. Further, we analyze the memory footprint breakdown of MoE
training and identify that activations and temporary buffers are the primary contributors to the overall memory footprint. Toward memory
efficiency, we propose memory reuse strategies to reduce memory requirements by eliminating memory redundancies. Finally, to
optimize pipeline granularity and memory reuse strategies jointly, we propose a profile-based algorithm and a performance model to
determine the configurations of MPMoE at runtime. We implement MPMoE upon PyTorch and evaluate it with common MoE models in
two physical clusters, including 64 NVIDIA A100 GPU cards and 16 NVIDIA V100 GPU cards. Compared with the state-of-art approach,
MPMoE achieves up to 2.3× speedup while reducing more than 30% memory footprint for training large models.

Index Terms—Mixture of Experts, Pipeline Parallelism, Distributed Training, Memory Redundancy, Performance Model

✦

1 INTRODUCTION

Scaling up the size of neural networks has emerged as
a promising approach for improving model accuracy
across various applications [1]–[4]. Notably, in natural
language processing (NLP), the utilization of large pre-
trained language models [5]–[8] has demonstrated ef-
fectiveness in diverse domains, including language un-
derstanding [6], sequence generating [9], [10] and cross-
lingual downstream transfer [11]. Recently, Mixture-of-
Experts (MoE) has been adopted to scale neural net-
works to an extreme size without introducing a propor-
tional increase in computational cost [12]–[14]. The MoE
architecture consists of many sub-models called experts.
It employs a trainable gating network to intelligently
forward the input token to specific experts. The sparse
combination of experts makes it practical to save much
computation capacity and improve model accuracy com-
pared to dense models with the same computation re-
sources, such as Google’s Switch Transformer [14] and
Meta’s BASE Layer [15].

During the training of a MoE model, a large num-
ber of GPU servers are utilized to distribute differ-

• Zheng Zhang, Yaqi Xia, Hulin Wang, Chuang Hu and
Dazhao Cheng are with the School of Computer Sci-
ence, Wuhan University, Hubei 430072, China. (E-mail:
{zzhang3031,yaqixia,wonghulin,handc,dcheng}@whu.edu.cn.)

• Donglin Yang is at Nvidia Corp. (E-mail: dongliny@nvidia.com)
• Xiaobo Zhou is with IOTSC & Department of Computer and

Information Sciences, University of Macau, Macau. (E-mail:
waynexzhou@um.edu.mo.)

(Corresponding author: Dazhao Cheng.)

ent experts. This training process involves performing
All-to-All [16]–[18] communication primitive operations,
responsible for dispatching tokens to the desired ex-
perts and collecting them after processing. This ap-
proach, known as expert parallelism [14], is illustrated
in Figure 1. In distributed settings, the communication
phase becomes a significant performance bottleneck. It
is reported in the literature [19] that a variant of MoE
without All-to-All can achieve a relative improvement
of communication cost by more than 90% in extreme
cases. Furthermore, when scaling up models to extra-
large sizes, the limited capacity of GPU DRAM poses a
significant challenge for researchers aiming to explore
deeper and wider neural networks. The constrained
memory size of GPU DRAM limits the maximum model
size that can be accommodated, requiring careful con-
sideration and optimization strategies. Addressing these
challenges becomes crucial to effectively leverage the
potential benefits of scaling up models for improved
performance and accuracy.

There are system and algorithm optimizations that
tackle the intrinsic inefficiency of All-to-All synchronous
communication in MoE [13], [19]–[21]. For example,
the work [19] proposed a gating dropout algorithm to
reduce the traffic of communication. Recently, Faster-
MoE [21] adopted pipeline parallelism to alleviate the
overhead of communication with expert shadowing. In
parallel with our works, [22] accelerates DNN training
using SPMD parallelism and overlap communication
and computation of two micro-batches. These works
achieve significant speedup upon the existing systems

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

2

in training large MoE models. However, the granularity
of pipelining is pre-defined and it is fixed throughout
the training. In practice, the dynamic nature of com-
munication demands adaptive pipeline parallelism, be-
cause the coarse-grained pipelining fails to fully exploit
parallelism while very fine-grained pipelining results in
excessive overhead due to frequent kernel launches and
under-utilization of GPU resources. Furthermore, the
existing approaches ignore memory efficiency in MoE
training, which is the key to scaling up the model to
extra-scale.

In this paper, we propose to address the inefficiency
of communication and memory usage of MoE training
in a holistic manner. First, to alleviate the overhead
of communication, we analyze the system behaviors of
communication and computation for the MoE architec-
ture and design pipeline parallelism [23] method for
MoE, which partitions a batch of tokens into several
micro-batches and overlaps the execution of computa-
tion and communication. Different from FasterMoE [21],
we partition tokens in a more effective manner to avoid
inefficient NCCL [24] calls.

Furthermore, we examine the memory footprint of
MoE training, which mainly comes from three compo-
nents: i) model states of experts; ii) activations; iii) tempo-
rary buffers. Among the three components, activations
are the primary contributor to the memory footprint
when the batch size is increased. As shown in Fig-
ure 1, expert parallelism [14] is designed to scale up the
model size by distributing experts across devices evenly.
Similarly to Zero Redundancy Optimizer [25], [26], it
partitions parameters, optimizer states, and gradients
of the model across devices, alleviating the memory
footprint of model states in MoE. However, the memory
footprints of activations and temporary buffers have the
potential for further reduction.

We aim to reduce the memory footprint by sharing
buffers for different partitions of tensors. However, a
new challenge is introduced, as activations are overwrit-
ten when different partitions request the same mem-
ory address. To deal with this problem, we resort to
re-computation/communication [27] and CPU offload-
ing [28], [29] for recovering activations in the backward
pass. By leveraging that modern GPUs support over-
lapping computations and data transfers, we offload
data to CPUs in the forward pass and compute at
GPUs simultaneously. What’s more, the performance of
pipeline parallelism is sensitive to pipeline granularity
and memory reuse strategies. To achieve optimal per-
formance, we propose two methods to find the best
configuration at runtime. By adopting these approaches,
we can effectively optimize both pipeline parallelism and
memory reuse, resulting in improved performance and
efficient memory usage during the runtime.

A preliminary version of this paper appears in [30].
The conference version studies MoE training acceler-
ation through pipeline parallelism and memory reuse
but they are deployed separately. In this manuscript,

GPU 0

outputFC1 FC2dispatched

input middle dispatched

output

input outputFC1 FC2input dispatched

input middle dispatched

output

GPU 1 outputFC1 FC2dispatched

input middle dispatched

output

......

GPU n

input

A
L

L
-t

o-
A

L
L

input

A
L

L
-t

o-
A

L
L

input G

input G

expert 0

expert 1

expert n
......

data flow TI TDI TM TDO TO

G

routing dispatch compute recovery

Fig. 1. The illustration of expert parallelism of MoE and
its data flow. The green circles represent sub-modules
of the MoE layer, and the purple rectangles represent
activation tensors of MoE training. For simplicity, We take
TI , TDI , TM , TDO, TO at the bottom of the figure as ab-
breviations of input, dispatched input, middle, dispatched
output, output tensors, which are in green color.

we holistically combine these two strategies and further
propose a profile-based algorithm with a performance
model to determine the configurations of MPMoE at
runtime. More specifically, we make the following new
contributions:

• To jointly optimize pipeline parallelism and memory
reuse strategies, we propose a lightweight profile-
based algorithm, which leverages profiling informa-
tion to identify the most suitable configuration at
runtime.

• We categorize all the pipeline parallelism patterns
into three paradigms and establish performance
models to estimate their performance on the fly.
We leverage the performance model to determine
MPMoE’s configuration holistically.

• We conduct experiments in a new cluster, i.e., valor,
which consists of 4 servers with 16 NVIDIA Tesla
V100. We supplement more analysis experiments
and update some existing experiments in various
settings.

• We add a micro-benchmark to further validate the
communication efficiency of MPMoE. Additional
performance breakdown experiments for analyzing
the overhead of data partitioning and the efficiency
of pipelining are presented.

The rest of this paper is organized as follows. Section 2
gives background and motivations for distributed train-
ing of MoE models. Section 3 describes the main system
design of MPMoE. Section 4 depicts two methods for
optimizing the granularity of pipeline parallelism and
memory reuse jointly. Section 5 presents the experimen-
tal setup and evaluation results. Section 6 reviews related
works. Section 7 concludes the paper.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

3

2 BACKGROUND AND MOTIVATION

2.1 Mixture of Experts (MoE)

The transformer architecture gained significant attention
in the NLP community for its exceptional performance
in sequence-to-sequence tasks, particularly in neural ma-
chine translation. A transformer model is composed of
several blocks, each of which comprises of self-attention,
cross-attention, and Feed-Forward-Network (FFN) mod-
ules. Ever since, transformer-based models become the
top performers in various NLP tasks, such as BERT [5],
RoBERTa [7], and GPT-3 [8]. Scaling up the model size
results in a significant increase in computational cost for
both training and inference. These transformer models
are densely activated, meaning that all model parameters
are used to process all input examples at a tremendous
expense [31].

MoE provides an efficient solution to reducing the
cost of training extra-scale models, which incurs only
sub-linear compute costs concerning the model size by
sparsely activating a subset of the model parameters
for given inputs. For example, the cost of training the
Switch Transformer [14] with 1.6 trillion parameters is
indeed less than the computation budget required to
train a dense model with 10 billion parameters. The
core component of these MoE models [12], [14], [26] is
the MoE layer, which replaces the FFN sub-layer in the
original dense transformers.

Expert Parallelism for MoE. In training large-scale
MoE models, expert parallelism [14] is commonly em-
ployed to mitigate memory footprint by distributing
individual experts across multiple devices. As depicted
in Figure 1, a gating network assigns a destination device
for each token, followed by an All-to-All communication
operation. Subsequently, each device executes its local
expert, which typically consists of an FFN layer compris-
ing two linear layers and an activation function. Finally,
a second All-to-All communication phase is conducted
to transmit the processed tokens back to their respective
devices.

Inefficient Synchronous Communication. In training
MoE models, each expert relies on All-to-All commu-
nication to exchange tokens with other devices. How-
ever, the communication phase poses a significant time-
consuming aspect in the training process [19], [21]. Both
the All-to-All and expert process procedures are syn-
chronous operations, involving blocking mechanisms as
they wait for the arrival of the required data. These
synchronous operations can lead to potential bottlenecks
and increased training time. Therefore, optimizing the
communication phase is crucial for improving the effi-
ciency and overall performance of MoE models.

2.2 Memory Footprint of MoE

2.2.1 Constituents of Memory Footprint
We first analyze the usage of the memory, including
model states, activations, and temporary buffers.

TABLE 1
Notations used in memory usage formulation.

Notation Definition Notation Definition

M model dimension B the batch size of tokens
H hidden dimension n the number of partitions
N the number of nodes

GPT-S GPT-XL BERT-L0

0.2

0.4

0.6

0.8

1

m
em

or
y

pr
op

or
tio

n

model states activations temporary buffer

0%

20%

40%

60%

80%

100%

GP
U

ut
iliz

at
io

n

GPU utilization

Fig. 2. Breakdown of memory footprint ratio and GPU uti-
lization. The experiments are conducted on three different
MoE layers with various numbers of tokens ranging from
256 to 16k with exponential factor 2.

Model States. Model states are one of the main
contributors to memory consumption during training,
which includes parameters, gradients, and optimizer
states [25]. For optimizers like ADAM [32], momentum
and variance are necessary for update gradients, leading
to several times more memory requirement than param-
eters.

Activations. Activations are the intermediate ten-
sors in forward computing, accounting for a significant
amount of memory usage [27], especially for the large
batch size. As a concrete example, the 1.5B parameters’
GPT-2 model that is trained with a sequence length of
1K and batch size of 32 requires about 60GB of GPU
memory.

Temporary Buffers. Temporary buffers are used to
store intermediate results for a very short period, which
are not required for future computation, i.e., the back-
ward pass. For instance, gradients generated in the
backward pass are consumed immediately and can be
discarded after they are used.

2.2.2 Formulation of Memory Footprint of MoE

In order to analyze the memory footprint of MoE, we
provide a detailed depiction of the data flow during
the communication and expert computation stages, as
illustrated in Figure 1. The process begins with the input
tensor TI , which is then sliced and dispatched across de-
vices during the All-to-All stage, resulting in the tensor
TDI . Each expert takes TDI as input and produces output
tensors TM and TDO through two sequential linear layers
(FFNs). It is worth noting that the activation function
is omitted in this case, as in-place operations can be

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

4

utilized. Finally, the collective operations on slices of
TDO yield the tensor TO.

The memory footprint of model states, activation, and
temporary buffers are denoted as Mms, Mact, and Mbuf,
respectively. We summarize other notations in Table 1.
The structure of an MoE layer consists of a gating net-
work and an expert. As formulated in Equation (1), E∗M
equals the number of parameters in the gating network
and 2∗H∗M equals that of an expert. Besides, Adam [32]
is chosen as the default optimizer, requiring an addi-
tional memory footprint for momentum and variance.
As a result, it takes 4 times the memory of parameters for
storing model states, including parameters, gradients,
momentum, and variance.

The memory footprint of activations is summarized in
Equation 2, where the shape of tensors TI , TDI , TDO, TO

is (B,M) and the shape of tensor TM is (B,H). For
simplicity, we do not consider small tensors such as the
routing data of the gating network, because their sizes
are one to two orders of magnitude smaller than other
activation tensors.

In the backward pass, the GPU device is required
to allocate temporary buffers to store the gradients of
activations which will be discarded as soon as they
are used. When operations are executed in sequence,
only two adjacent tensors are required to be cached
in the device. The formulation of memory footprint is
presented in Equation 3, which is the peak requirement
of temporary buffers.

Mms = 4 ∗ (E ∗M + 2 ∗H ∗M) (1)
Mact = 4 ∗B ∗M +B ∗H (2)
Mbuf = B ∗M +B ∗H (3)

To visualize the memory consumption of Mms, Mact,
Mbuf, we plot the ratio of memory footprint in different
MoE settings as shown in Figure 2. It can be seen that
activations and temporary buffers account for the major
portions of the memory footprint with the increasing
number of tokens. We also monitor the GPU utilization
for the experiment. We observe that a small batch size
leads to GPU under-utilization, especially for the MoE
layer in GPT-S. As a result, it is necessary to increase
the batch size for higher GPU utilization. Based on the
above observations, we motivate the need to reduce the
memory footprint of activation tensors and temporary
buffers to train the model with the large batch size.

2.3 Feasibility of Parallelism
The speed of the communication, computation, and
memory copy is denoted as Wcomp, Wcomm, and Wmem,
respectively. Ideally, three types of operations do not
affect each other when they are being executed in parallel
because they request individual hardware resources in
principle. However, in a real environment, there exists
resource competition when executing multiple opera-
tions in parallel CUDA streams. For example, the com-
munication and memory copy race for memory band-

comp mem comm all

co
m

p
m

em
co

m
m

1 1 0.96 0.94

0.96 1 0.72 0.69

0.72 0.77 1 0.7 0.7

0.8

0.9

1.0

Fig. 3. One case of α(y, x), denoting the slowdown factor
of y influenced by x. The range of values for y is “comm”,
“comp”, and “mem”, while that for x is extended to include
“all”. α(y, all) represents the slowdown factor of y when it
is simultaneously influenced by the other two operations.

width. Performance slowdown occurs if running multi-
ple NVIDIA Collective Communication Library (NCCL)
kernels concurrently with computation kernels on the
same device. To quantify the degree of slowdown, we
define the α(y, x) as the slowdown factor of y influenced
by x. In practice, x and y represent different operations
streams, i.e. “comm”, “comp”, and “mem”. Specifically,
x has an additional value “all”, which is regarded as the
case when all three types of CUDA streams are executed
in parallel.

The values of α(y, x) indicate the feasibility of par-
allelism. For example, to take advantage of over-
lapping between communication and computation,
α(comp, comm) and α(comm, comp) are required to be
greater than 0.5, otherwise, the execution time of com-
munication or computation would exceed the original
end-to-end time, leading to deterioration of the end-to-
end performance.

To better understand the interference between oper-
ations, we run micro-benchmarks in our cluster and
measure the actual slowdown factors of communication,
computation, and memory copy in different situations.
Results are demonstrated in Figure 3, from which we can
learn that:

• Slowdown is introduced in communication if we ex-
ecute computation with communication in parallel.
Even though, it is feasible to overlap communication
and computation only if we can make sure that
α(comm, comp), α(comp, comm) are larger than 0.5.

• Computation is slightly influenced by other oper-
ations, which is negligible in terms of end-to-end
performance. As a result, we regard α(comp, x) by
default in this paper.

• There exists an obvious performance slowdown
when communication and memory copy streams are
executed in parallel, which is because of bandwidth
competition.

The observations above motivate us to design adaptive
pipeline parallelism with memory efficiency.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

5

F

F

B

Device 1

Device 2

B

F1

F1

B1

B1

F2

F2

B2

B2

F3

F3

B3

B3

F4

F4

B4

B4Device 1

Device 2

Reduced Time

F

B

forward backward

(a) Pipeline parallelism in GPipe.

S

C

R

S1 R1

C1

Comm.

Comp.

Comm.

Comp.

S2 S3 S4

C2 C3 C4

R2 R3 R4 Reduced Time

split into micro batches

S1 R1

C1

S2 S3 S4

C2 C3 C4

R2 R3 R4Comm.

Comp.

overlap comm./comp. of different micro batches

S RCdispatch compute recovery

(b) The proposed pipeline parallelism.

Fig. 4. The illustration of GPipe and micro-batch pipeline
parallelism in MPMoE. (a) F and B represent forward
pass and backward, respectively. (b) S, C, and R rep-
resent the first All-to-All, computation of experts, and
the second All-to-All. The serial number in every block
represents the index of the micro-batch partition.

3 SYSTEM DESIGN

3.1 Overview

We present the system design of MPMoE. First, we
introduce pipeline parallelism for MoE and compare
it with FasterMoE. Then, we propose memory reuse
strategies to eliminate “memory bubbles” in the pipeline.

3.2 Micro-batch Pipelining

As stated in Section 2.1, the All-to-All operation is the
performance bottleneck to scaling out the training of
MoE models. Pipeline parallelism, which is known as
introduced in GPipe [33], can reduce the overhead of
communication by overlapping the computation and
communication. As is shown in Figure 4(a), layers of
the model are partitioned into multiple stages, which
are mapped to separate devices for performing compu-
tation. To deal with the severe under-utilization caused
by the sequential dependency of the neural network,
GPipe divides the input mini-batch into smaller micro-
batches, allowing different accelerators to work on dif-
ferent micro-batches simultaneously. Inspired by GPipe,
the micro-batch parallelism can also be applied to the

D0

D0

D1

D1

D2

D2

D3

D3

D0

D0

D1

D1

D2

D2

D3

D3

Split by N

B

N

t1

t2

t3

t4

(a) FasterMoE’s fashion

D0 D2D1 D3

All-to-All × 4

Split by B

B

N

t1

t4

(b) MPMoE’s fashion

Fig. 5. Comparison of the pipeline pattern between
FasterMoE and MPMoE.

MoE layers. Note that pipeline is not a new idea [33],
[34], however, we draw an analogy between the stages
in GPipe and different phases of MoE dataflow, then we
introduce pipeline parallelism for MoE.

3.2.1 Micro-batch pipelining for MoE
As shown on the top of Figure 4(b), only one mini-
batch is active for computation or communication in
the traditional expert parallelism. In this setup, com-
putation and communication are ‘idle’ most time. With
this in mind, we partition a mini-batch of tokens into
multiple micro-batches and execute them in a pipelined
manner, sequentially one after another, as illustrated
at the bottom of Figure 4(b). Upon the completion of
the first All-to-All operation for a micro-batch, experts
initiate asynchronous computations while concurrently
beginning to receive another mini-batch. Subsequently,
the second All-to-All operation commences immediately
after the calculations are finished. Moreover, there are no
dependencies among operations of different partitions.
As a result, we schedule the S and R stages to be
executed alternately to enhance the locality of memory
accesses. This workflow, consisting of ”communication
→ computation → communication,” exhibits symmetry
in the backward pass.

3.2.2 Comparison with FasterMoE
Difference in Pipeline Parallelism. FasterMoE [21] also
adopts pipeline parallelism to improve the efficiency
of MoE training. Different from FasterMoE, we apply
a distinguishing method to split the batch data and
propose a new optimization solution for communication.
As shown in Figure 5, the shape of tensor TI is (N,B),
the first dimension is the number of devices while the
second is the batch size of tokens. Each row of the
tensor is assigned to the device, which is indicated in
a different color in the figure. There exist two meth-
ods for splitting TI into multiple partitions. The first

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

6

method, adopted by FasterMoE, splits TI along the node
dimension. The All-to-All operation is partitioned into
several point-to-point communications among workers
for each partition as shown in Figure 5(a). All nodes
are divided into several groups, in resulting (m − 1)×
“NCCL group calls” for m groups. In an extreme case
where the group size is reduced to 1, the communication
pattern degrades to P2P communication. The second
method, adopted by ours, splits TI along the batch size
dimension as shown in Figure 5(b). The original All-to-
All is split into a few independently fine-grained ones,
each launches a micro All-to-All across all nodes. The
former method has three disadvantages. First, the All-to-
All communication is broken down into multiple point-
to-point communications, making it infeasible to take
advantage of optimizations offered by NCCL. Second, in
the phase of communication, if the network bandwidth
is heterogeneous among workers, the synchronization
procedure causes a waste of resources for those workers
with higher bandwidth. Finally, because FasterMoE par-
titions data based on nodes, the pipeline granularity is
limited to the number of nodes. However, our approach
partitions data based on the batch dimension, and it’s
flexible to adjust the pipeline granularity to find the best
pipelining because each batch contains at least hundreds
of tokens for partitioning. As a result, MPMoE adopts the
latter method for better performance.

Difference in Computation. Leveraging the power
of GPU’s tensor cores, we harness the computational
capabilities of tensor cores in GPUs to expedite the
computing process. By utilizing these specialized hard-
ware components, MPMoE achieves an accelerated per-
formance of expert computation.

3.3 Memory Reuse

Tensors TDI , TM , and TDO are split into n partitions
in pipeline parallelism. Different partitions of tensors
are activated at different times, resulting in “memory
bubbles” as shown at the top of Figure 6. The same
operation on different partitions is pipelined into a single
stream and executed in sequence. We demonstrate that
the input or output tensors of these operations can be
shared among partitions to reduce memory redundancy.
For example, the i-th partition of tensor TM is activated
for computation at time t and the (i+1)-th partition
is activated at time t + 1. Thus we just can allocate
one buffer memory to store partitions of TM in turn.
In this way, the required memory is reduced from m
to m

n , where m is the original memory requirement.
Similarly for TDI and TDO, each requires two buffers for
communication and computation as shown at the bottom
case of Figure 6.

The memory reuse method is applicable for temporary
buffers. The peak memory requirement of temporary
buffers equals that of activations in pipeline parallelism,
thus we can obtain Mpipe

buf in Equation 4. With mem-
ory reuse, the corresponding reduced memory ∆Mbuf

I DI M DO O

pi
pe

lin
e

tim
es

te
p

memory space

pi
pe

lin
e

tim
es

te
p

I DI M DO O

Micro Batch1(B1) Micro Batch2(B2) Micro Batch3(B3) Micro Batch1(B4)memory reuse

Fig. 6. The illustration of memory reuse. The top figure
demonstrates “memory bubbles” in pipeline parallelism
and the bottom one shows the compressed memory by
memory reuse.

TABLE 2
Different Strategies for Memory Reuse

strategy TDI TM strategy TDI TM

S1 offload offload S3 offload recompute
S2 comm. offload S4 comm. recompute

equals ∆Mact, which is presented in Equation 5. Finally,
we can obtain the memory saving ratio ϕ as formulated
in Equation 6.

Mpipe
buf = Mpipe

act = 4 ∗B ∗M +B ∗H (4)

∆Mbuf = ∆Mact = B ∗ (2M ∗ n− 2

n
+H ∗ n− 1

n
) (5)

ϕ =
∆Mact +∆Mbuf

Mms +Mpipe
act +Mpipe

buf

(6)

After eliminating memory redundancy, tensors
TDI , TM are overridden by other partitions. However,
these tensors are required for computing the gradients
in the backward pass. To restore tensors TDI , TM , we
consider two methods as follows.

• Data offloading. Leveraging the fact that modern
GPUs support overlapping computations and data
transfers, we can swap data back to the CPU in the
forward pass and prefetch data to the GPU memory
in the backward pass.

• Communication and re-computation. Tensor TDI

can be transferred again from tensor TI . And TM

can be re-computed from TDI . Ideally, the additional
cost of re-computation can be mitigated if commu-
nication is the bottleneck and vice versa.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

7

S1 S2 S3 S4
C1 C2 C3 C4

R1 R2 R3 R4 S1 S2 S3 S4
C1 C2 C3 C4

R1 R2 R3 R4

C1 C2 C3 C4
H1 H1 H2 H4H3H2 H3 H4

C1 C2 C3 C4
H1 H2 H4H3

C1 C2 C3 C4
D1 D1 D2 D4D3D2 D3 D4

C1 C2 C3 C4
D1 D2 D4D3

C1 C2 C3 C4
H1 H2 H4H3

C1 C2 C3 C4
D1 D2 D4D3

C1 C2 C3 C4 C1 C2 C3 C4

Forward Pass Backward Pass

S1 S2 S3 S4R1 R2 R3 R4 S1 S2 S3 S4R1 R2 R3 R4

S1 S2 S3 S4R1 R2 R3 R4 S1 S2 S3 S4R1 R2 R3 R4

S1 S2 S3 S4R1 R2 R3 R4 S1 S2 S3 S4R1 R2 R3 R4

S1 S2 S3 S4R1 R2 R3 R4 S1 S2 S3 S4R1 R2 R3 R4

S C Rdispatch recovorycompute recompute re-communicate

H H D Ddevice to host
(TDI)

device to host
(TM)

host to device
(TDI)

host to device
(TM)

W/O. memory reuse

S1. offload TDI, TM

S2. offload TDI, recompute TM

S3. re-communicate TDI, offload TM

S4. re-communicate TDI, re-compute TM

Fig. 7. The timeline of pipeline parallelism and memory
reuse.

As a result, we have four memory reuse strategies, i.e.,
S1, S2, S3, and S4, as listed in Table 2, for MoE training.
These strategies distinguish in adopting different meth-
ods to restore TDI and TM in the backward pass. Because
there is no dependency among operations of different
partitions, we schedule S and R in Figure 4(b) to be
executed in an alternative manner for the better locality
of memory accesses. Compared with the timeline of the
pipeline without a memory reuse strategy as shown in
Figure 7, S1, S2, and S3 require another CUDA stream
to perform memory copy operations in parallel with
computation and communication. Specifically, device-to-
host and host-to-device memory copy operations are
involved in the forward pass and the backward pass,
respectively. In S2 and S4, additional communication
operations are introduced to restore TDI in the back-
ward pass. Additional computation operations are also
required for restoring TM in S3 and S4.

4 JOINT OPTIMIZATION OF PIPELINING AND
MEMORY REUSE

As described in Section 3.2 and Section 3.3, we propose
micro-batch pipelining to mitigate the latency of com-
munication and memory reuse strategies to reduce the
memory footprint. However, each design is influenced
by certain configurations. First, the performance of the
micro-batch pipelining depends on the granularity of the
pipeline, which is determined by n. A pipeline that is too
coarse-grained may result in insufficient overlap, while
a pipeline that is too fine-grained may lead to underuti-
lization of hardware resources such as GPU utilization
and network bandwidth. Second, the latency overhead

Algorithm 1: Adaptive Pipeline Granularity
Search

Input: the batch size of tokens B
Input: the memory reuse strategy S
Output: the number of partitions n
/* SortedDict({ni : (B

floor
i , Bceil

i })) */
1 global: G = {2 : (0, 1), 8 : (∞,∞)};
2 global: C = {} ;
3 if B in C then
4 return C[B] ;
5 end
6 ((Bfloor, Bceil, ni) = find closest B(G,B) ;
/* find best n for B */

7 if (B > Bceil) then
8 , Bceil = G[ni+1] ;
9 nfloor = ni;

10 nceil = ni+1;
11 n = searchBestGran(B, (nfloor, nceil)) ;
12 end
13 if (B < Bfloor) then
14 Bfloor, = G[ni−1] ;
15 nfloor = ni−1;
16 nceil = ni;
17 n = searchBestGran(B, (nfloor, nceil)) ;
18 end
/* update G */

19 if (n! = nfloor&&n! = nceil) then
20 G[n] = (B,B) ;
21 else
22 G[n] = (min(B,Blower),max(B,Bupper));
23 end
24 C[B] = n ;
25 return n;

of memory reuse is affected by the activation-restoring
strategies, which is denoted as S. Consequently, we
consider the configuration of MPMoE to be (n, S). To
determine the optimal configuration, we explore two
methods:

• Profile-Based. This method determines the optimal
configuration by profiling performance metrics in
the real environment. However, this approach in-
curs the profiling overhead and the search space
for configurations increases with the combination
of different pipeline granularity and memory reuse
strategies.

• Performance Modeling. Establishing a performance
model to estimate the performance of different con-
figurations. This method benefits from its fast speed
but may struggle to achieve high accuracy in com-
plex product environments.

In this paper, we aim to optimize pipelining and memory
reuse strategies jointly by employing the two aforemen-
tioned methods. The performance of both methods will
be studied in Section 5.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

8

4.1 Profile-Based
As mentioned above, the profile-based method suffers
from profiling overhead. To mitigate this, we can cache
and reuse all profiling data. However, since the variable
B is dynamic and covers a wide range during the
training process of MoE models [35], searching for the
optimal (n, S) configuration for every value of B is time-
consuming.

In order to reduce the search space, we propose so-
lutions based on two intuitive hypotheses: First, n is
monotonically increasing as B increases for each S. As
a result, the whole value domain of B can be divided
into a set of disjoint ranges. We only need to find the
boundaries of each range, which reduces the cost of
configuration on n by one to two orders of magnitude.
Second, given input with batch size equal to B, the
performance of the MoE Layers with respect to n is
parabola-like. This is reasonable because a very coarse-
grained pipeline leads to insufficient overlap and a fine-
grained pipeline leads to low utilization of hardware
resources.

Specifically, we obtain the best configuration for each
S as illustrated in Algorithm 1. C is denoted as the cache
of searched results and G = {n1 : (Bfloor

1 , Bceil
1), n2 :

(Bfloor
2 , Bceil

2), . . . } denotes the boundaries of searched
ranges, where (Bfloor

1 , Bceil
1), (Bfloor

2 , Bceil
2) correspond

to the ranges whose best granularity are n1, n2 respec-
tively. Here G is sorted in ascending order according to
n, and Bs in G are monotonically increasing with respect
to n. When coming to a new B which does not exist in
C, we try to find the range i where B ≥ Bfloor

i and
B ≤ Bceil

i and take ni as the best granularity, i.e., lines
6. If not found, we obtain nl and nh from G where range
i − 1 and range i + 1 are the closest ranges to B(values
in range i− 1 are smaller than B and in range i+ 1 are
bigger than B). Then, we profile the execution time of
the program with different granularities ranging from
nfloor to nceil and obtain the best granularity n, i.e.,
lines 7-17. Here we call searchBestGran to search for
the optimal configuration from nfloor to nceil, i.e. line 11,
17. Because the performance concerning n is parabola-
like, we can stop the searching process when meeting
the tuning point of n. Finally, we update G according
to B,n, i.e. lines 19-23. With more training iterations,
the boundaries of ranges are more accurate, the profiling
processes are fewer and search scopes are fewer. Besides,
we initialize G with {1 : (0, 1), 8 : (∞,∞)} in line 1,
indicating the scope of granularity is limited from 2 to
8. This is reasonable because we find it is applicable to
the vast majority of scenarios.

Once the optimal pipeline granularity for each mem-
ory reuse strategy is chosen, we can configure the opti-
mal (n, S) by simply comparing the results.

4.2 Performance Modeling
As mentioned earlier, the profile-based method relies on
time-consuming profiling steps. In this section, we aim

S R

C

S1 S2 S3 S4
C1 C2 C3 C4

R1 R2 R3 R4

P0 P1 P2 P3 P4

execute time: P0: tS, P1: max(tS, tC),

P2: max(tS+tR, tC), P3: max{tR,tC}, P4: tR

(a) Paradigm 1. Only consider communication and computation. This is
applicable to S4.

S R

C

M

C1 C2 C3 C4
M1 M2 H4M3

S1 S2 S3 S4R1 R2 R3 R4
P0 P1 P2 P3 P4

execute time: P0: S, P1: max(tS, tC, tM),

P2: max(tS+tR, tC, tM), P3: max{tR,tC, tM}, P4: tR

(b) Paradigm 2. This is applicable to forward pass of S1, S2 and S3.

S R

C

M

C1 C2 C3 C4
S1 S2 S3 S4R1 R2 R3 R4

M1 M2 H4M3

P0 P1 P2 P3 P4

execute time: P0: max(tS,M), P1: max(tS, tC, tM),

P2: max(tS+tR, tC, tM), P3: max{tR, tC}, P4: tR

(c) Paradigm 3. This is applicable to backward pass of S1, S2 and S3.

Fig. 8. The illustration of three pipeline paradigms, where
S, R, and C have the same meaning as in Figure 4(b),
and M represents memory transfer between CPU and
GPU respectively. The left DAG graph of each subfigure
represents the dependence between different operations
of each micro-batch. The right graph of each subfigure
describes the pipeline patterns, each includes 5 phases:
P0, the initial phase; P1, the saturating phase; P2, the
saturated phase; P3, the melting phase; and P4, the final
phase. The estimated execution time of each phase is
listed in the lower right corner of each subfigure.

to overcome this limitation by developing a lightweight
performance model to estimate the execution time of dif-
ferent configurations, which is able to obtain the optimal
configuration efficiently. However, we encounter two
challenges when constructing the performance model.
First, hardware utilization varies with the volume of
data, such as underutilized network bandwidth when
the data volume of each partition is too low. Second,
as explained in Section 2.3, the execution time of com-
munication, computation, and memory copy operations
can impact each other when executed in parallel, despite
individually requesting different hardware resources in
principle.

To address these challenges, we propose two solutions.
First, we have developed a piecewise function model to
accurately capture the speeds of communication, compu-
tation, and memory copying at different data volumes as
shown in Figure 9. In a specific product environment, we
execute micro-benchmark programs to profile the speeds
of these operations independently, which allows us to
establish a single performance model that can be applied

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

9

0 20 40 60 80 100
FLOP/(G)

2

3

4

5

6

FL
OP

S/
(T

) measured
predicted

(a) GeMM

0 20 40 60 80 100
Data Size/(MB)

0

2

4

6

8

Sp
ee

d/
(G

B/
s)

measured(a2a)
predicted(a2a)

measured(mem)
predicted(mem)

(b) AlltoAll & Memory copy

Fig. 9. The micro-benchmarks for profiling and perform-
ing piecewise linear fitting of the performance of specific
operations.

to multiple models within the same product environ-
ment, thereby minimizing overhead. Second, we utilize
the workers presented in Section 2.3 to quantify the
interference between different operations. These results
enable us to measure the impact of executing operations
in parallel and account for their mutual influence on
performance.

To simplify the representation of different pipeline
patterns, we abstract them into three pipeline paradigms,
as depicted in Figure 8. The meaning S, R, C is the
same as that in Figure 4(b) and we use the symbol M
to represent the memory transfer between the CPU and
GPU. The Paradigm 1 does not contain M, which is
applicable for S4. The Paradigm 2 involves M which
depends on S and C because the activations offloading to
CPU are produced from S and C. The forward pass of S1
to S3 obeys the paradigm 2. C in Paradigm 3 depends on
M because activations must be transferred to GPU before
computation, which is applicable for the backward pass
of S1 to S3.

For each paradigm, the pipeline can be divided into
five phases. 1) P0, the initial phase, in which only one
or two CUDA streams are working as usual; 2) P1,
the saturating phase, in which all CUDA streams are
launching but not saturated; 3) P2, the saturated phase,
in which all CUDA streams are saturated and steady, and
there may be multiple P2 stages in the whole pipeline;
4) P3, the melting phase, which is similar to P1; 5) P4,
the final phase, which is similar to P0.

The estimated execution time of each phase is pro-
vided in the right bottom corner of each subfigure
depicted in Figure 8. In each phase, the execution time
is determined by the bottleneck CUDA stream. For
example, the execution time of P2 in paradigm 1 is
determined by the maximum execution time of R+S and
C. For the sake of conciseness, we omit the slowdown
factors in the formulation of Figure 8. For instance,
the complete formulation of P2’s execution time in
paradigm 1 is max(tS+tR

α(comm,comp) ,
tC

α(copm,comm)), where α
comes from Section 2.3.

TABLE 3
Specifications of MoE layers

Model Name dmodel dhidden #experts

MoE-GPT-S 768 3072 64/16
MoE-GPT-XL 2048 8192 64/16
MoE-BERT-L 1024 4096 64/16

5 EVALUATION
5.1 Experimental Setup

Software platform: We implement our approach using
PyTorch 1.9, CUDA Toolkit 11.1, NCCL 2.7, and Ubuntu
18.04.

Regarding to hardware platform, We evaluate MP-
MoE on two representative clusters as follows.

Adira consists of 8 NVIDIA DGX A100 servers. Each
node is equipped with 8 A100 40GB GPUs and 200
Gbps HDR InfiniBand. GPUs are connected by the 3-
rd generation NVLink within each machine. We regard
Adira as a representative of supercomputers.

Valor is a cluster with 16 GPUs on 4 worker nodes.
Each node is equipped with 4 GPUs, and each GPU is
NVIDIA Tesla V100 with 16GiB HBM. These nodes
are connected by 56Gbps HDR Infiniband, and GPUs
are connected by the 2-rd generation NVLink within
each machine. Valor cluster represents a common class
of hardware widely used in Deep Learning training.

5.2 Methodology

Models and configurations The significant difference in
the MoE layer among various models stems from the
size of experts, determined by M and H , as well as
the number of tokens denoted as B. In this study, our
objective is to validate the effectiveness of the proposed
methods on different expert sizes and batch sizes. To
achieve this, we configure the expert sizes of the feed-
forward networks in BERT [5] and GPT-3 [8], as outlined
in Table 3. Here, dmodel denotes the token embedding
dimension, and dhidden represents the hidden dimension
of the FFN layer in the respective models. To conduct our
experiments, we create a dummy dataset by generating
random tokens as input for the different models. For
all experiments, we employ the Adam optimizer [32].
The efficiency of the MPMoE (Mixture Proportion MoE)
method is evaluated based on the average training time
and the peak memory footprint.

To demonstrate the performance gain and memory
efficiency, we compare MPMoE against the state-of-
art system FasterMoE [21], which implements dynamic
shadowing and pipeline parallelism in MoE training.
We choose FastMoE [36] as another competitor, which
utilizes primitive expert parallelism without pipeline
parallelism.

We implement two versions of MPMoE: MPMoE-pb
and MPMoE-pm, which differ in how to joint opti-
mization for pipelining and memory reuse. The former

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

10

BERT-
L(1k)

BERT-
L(2k)

BERT-
L(4k)

GPT-X
L(1k)

GPT-X
L(2k)

GPT-X
L(4k)

GPT-S
(0.5k

)
GPT-S

(1k)
BERT-

L(0.5
k)
BERT-

L(1k)
0.0

0.5

1.0

1.5

2.0

2.5

3.0
sp
ee

du
p adria

valor

FastMoE
FasterMoE
MPMoE-pb
MPMoE-pm

Fig. 10. The speedup of different methods in MoE training
with the same model setting and the number of tokens B.
The format of x-axis is “model name(B)”.

utilizes a profile-based method, while the latter relies
on the performance model as described in Section 4.2
to optimize pipelining and memory reuse in a unified
manner.

5.3 Overall Speedup
Figure 10 presents the speedup achieved by MPMoE-pb
and MPMoE-pm compared to FastMoE and FasterMoE
in model training. In comparison to FasterMoE, MPMoE-
pb and MPMoE-pm achieve an average speedup of
1.66× and 1.55×, respectively, across various models
and batch sizes. When compared to FastMoE, MPMoE-
pb and MPMoE-pm achieve an average speedup of
2.34× and 2.20×, respectively. The superior performance
of FasterMoE over FastMoE can be attributed to the
utilization of pipeline parallelism and the overlapping
of computation and communication. Notably, MPMoE-
pb and MPMoE-pm can enhance the speedup up to
2.32× when compared to FasterMoE. This significant
improvement is largely due to the efficient communica-
tion pattern and the adaptive configuration of pipeline
granularity employed by MPMoE-pb and MPMoE-pm.

On the Adira cluster, MPMoE-pm exhibits inferior
performance compared to MPMoE-pb. This discrepancy
can be attributed to the more obvious network fluctua-
tions on the Adira cluster, which consequently degrade
the prediction accuracy of the performance model. Con-
versely, MPMoE-pm demonstrates comparable perfor-
mance on the Valor cluster.

5.4 Memory Footprint Reduction
MPMoE-pb and MPMoE-pm have the same memory
footprint when considering the same setting and the
same n. Therefore, we do not differentiate between the
two and refer to them both as MPMoE here. Addi-
tionally, the memory footprint of these approaches is
independent of the cluster being used. Therefore, we do
not distinguish between the Adira and Valor clusters in
this experiment.

Figure 11 illustrates the overall memory footprint of
the approaches. The left y-axis represents the mem-
ory footprint normalized to that of PMoE, which is a

GPT-S(1k)
GPT-S(2k)

GPT-S(4k)
BERT-L(1k)

BERT-L(2k)
BERT-L(4k)

GPT-XL(1k)
GPT-XL(2k)

GPT-XL(4k)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

no
rm

al
ize

d
m

em
or

y
fo

ot
pr

in
t

FastMoE
FasterMoE
PMoE

MPMoE(n=2)
MPMoE(n=4)
MPMoE(n=8)

Fig. 11. The memory footprint reduction by MPMoE. The
y-axis shows the ratio of memory footprint normalized to
PMoE.

GPT-S BERT-L GPT-XL0

0.2

0.4

0.6

m
em

or
y

sa
vi

ng
 ra

tio

theoretical
achieved

Fig. 12. The MPMoE achieved memory reduction ratios
compared to their theoretical results on three model set-
tings with the varying number of partitions n (2,4,8) and
batch sizes.

variant of MPMoE without memory reuse strategies.
PMoE serves as the baseline for comparing the memory
footprint of MPMoE. As indicated by Equation 6, the
memory footprint of MPMoE decreases monotonically
with an increasing number of pipeline stages, denoted
as n. This trend is verified in Figure 11, where MPMoE
achieves an average memory footprint reduction of 23%,
34%, and 38% for n values of 2, 4, and 8, respectively.
In comparison to FastMoE and FasterMoE, MPMoE
achieves a memory footprint reduction of up to 53%.

In Section 3.3, Equation 6 presents the theoretical up-
per bound for memory savings achieved by MPMoE. To
validate the effectiveness of this analysis, we provide the
actual memory-saving ratios achieved in comparison to
the theoretical bound. Figure 12 illustrates these results.
We conducted experiments on three different models,
varying the number of partitions n and the batch size of
tokens B to cover a wide range of scenarios. The experi-
ments demonstrate that MPMoE achieves approximately
95% of the theoretical bound in terms of memory sav-
ings. It is partially because we do not consider extremely
small-size tensors, such as routing data generated by
gating networks. Additionally, there may be memory
fragments during the memory allocation process, leading
to a slight discrepancy between the achieved results and
the theoretical predictions.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

11

0 20 40 60 80 100
Data Size (MB)

0

2

4

6

8

10

Sp
ee

d
(G

B/
s)

FasterMoE
MpipeMoE(n=2)
MpipeMoE(n=4)
MpipeMoE(n=8)
MpipeMoE(n=16)

(a) Micro-benchmarks on adira.

0 20 40 60 80 100
Data Size (MB)

0

1

2

3

4

Sp
ee

d
(G

B/
s)

FasterMoE
MpipeMoE(n=2)
MpipeMoE(n=4)
MpipeMoE(n=8)
MpipeMoE(n=16)

(b) Micro-benchmarks on valor.

Fig. 13. Micro-benchmarks for comparing communication
efficiency between FasterMoE and MPMoE.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
B/(k)

0.9

0.95

1.0

1.05

1.1

1.15

1.2

sp
ee

du
p

n=1 n=2 n=4 n=8 PMoE

Fig. 14. The effects of pipeline parallelism on various
pipeline granularity. The dashed line represents the adap-
tive granularity selected by the profile-based algorithm.
The x-axis represents various B values.

5.5 Ablation Studies
5.5.1 Communication Efficiency
Figure 13(a) and Figure 13(b) provide a comparison
of the communication speed between FasterMoE and
MPMoE with different pipeline granularities on the adira
and valor clusters, respectively. In this experiment, we
focus on measuring the execution time of the “dispatch”
and “recovery” phases, as depicted in Figure 1. Faster-
MoE exhibits poorer performance due to the launch
of multiple point-to-point (p2p) communications across
nodes separately. On the contrary, MPMoE employs
data splitting across batch dimensions. Although there
is an increase in the overhead of kernel launches and a
decrease in network efficiency as n (pipeline granularity)
increases, MPMoE runs faster and is able to exploit more
opportunities for pipelining.

5.5.2 Sensitive Analysis of Pipeline Granularity
For the sake of simplicity, we present the effectiveness of
the adaptive pipeline granularity configuration of PMoE,
which is independent of the memory reuse strategies.

As discussed in Section 4.1, we propose the hypothesis
that the value of n monotonically increases as the batch
size B increases. To verify this hypothesis, we evaluate
the performance of different pipeline granularities and
various batch sizes of tokens on the GPT-XL model. The
results are illustrated in Figure 14, confirming that the
optimal configuration of n depends on the batch size.
Specifically, when the batch size is smaller than 8k, n = 2

(8,4k
)

(8,8k
)
(8,16

k)
(16,4

k)
(16,8

k)
(16,1

6k)(32,4
k)

(32,8
k)
(32,1

6k)(64,4
k)

(64,8
k)
(64,1

6k)
0

5

10

15

20

25

ov
er
he

ad
(%

)

S1
S2
S3
S4
best

Fig. 15. The overhead of memory reuse strategies and
the effectiveness of the strategy selection method in MP-
MoE on Adira. The ticks on the x-axis represent different
numbers of GPUs N and the batch size of tokens B in
format (N,B).

yields the best performance. For batch sizes ranging
from 8k to 22k, n = 4 ensures optimal performance.
Finally, when the batch size exceeds 22k, the optimal
configuration becomes n = 8. Furthermore, Figure 14
also demonstrates the sensitivity of pipeline effectiveness
to the value of n.

5.5.3 Overhead of Memory Reuse Strategies
In terms of execution time, MPMoE performs worse than
PMoE because MPMoE achieves memory efficiency with
some additional overhead. MPMoE features four mem-
ory reuse strategies, i.e., S1, S2, S3, and S4 as defined in
Table 2, which resort to re-computation/communication
and CPU offloading to restore activation tensors in the
backward pass. For overhead analysis of the strategies,
we conduct experiments with different numbers of GPUs
N and various batch sizes of tokens B on adira. Figure 15
presents the results, from which we can observe that:

• S1 and S2 perform better when N is small, e.g.,
8, but worse with a larger N , e.g., 64. S1 and S2
introduce additional memory copy operations while
S2 introduces additional communication operations.
With the increasing number of workers, the cost
of communication also increases, which results in
worse performance for S2 due to the competition
on the memory bandwidth between memory copy
and communication.

• Both S3 and S4 introduce additional computational
costs, which perform worse if the workload is
computation-bound, i.e., N = 8.

• S4 performs better than S2 if N equals 32 or 64,
in which communication is the bottleneck because
memory copy over PCIe in S2 slows down commu-
nication operations.

• There is not much performance variation with the
varying batch sizes, indicating that the batch size is
not sensitive to the configuration of strategy.

Based on these observations, we can conclude that
there does not exist a single memory reuse strategy
that can ensure the best performance in all situations.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

12

no TensorCore
seq(n=1)

seq(n=6)
MPMoE-pb

MPMoE-pm
0

200

400

600

800

Ex
ec

cu
tio

n
Ti

m
e(

s)

others
comm

comp
comm+comp
overhead

(a) BERT-L

no TensorCore
seq(n=1)

seq(n=6)
MPMoE-pb

MPMoE-pm
0

300

600

900

1200

1500

1800

Ex
ec

cu
tio

n
Ti

m
e(

s)

others
comm

comp
comm+comp
overhead

(b) GPT-XL

Fig. 16. Performance breakdown. An example of training
MoELayers of BERT-L and GPT-XL with input batch size
equals 32 in 10000 steps on valor cluster.

So MPMoE-pb takes profile executions and MPMoE-
pm builds a performance model to decide the optimal
strategy.

5.6 Performance Breakdown and Overhead Analysis

Compared with native MoE, the overheads of MPMoE
come from two aspects: 1) data partition cost when
using pipelining, 2) the overheads of profiling for finding
optimal granularity dynamically. To analyze the over-
heads and the profits of our designs, we train BERT-L
and GPT-XL in five ways as shown in Figure 16(a) and
Figure 16(b): 1) no TensorCore, in this approach, the usage
of the tensor core is disabled manually and the data is
not partitioned. 2) seq(n=1), in this approach, the data is
not partitioned, and no overlap here. 3) seq(n=6), where
data are split into 6 parts but executed in sequence,
4) MPMoE-pb and 5) MPMoE-pm. We select n = 6
in the second experiment because the average n of
MPMoE-pb is around 6. Apart from computation and
communication which have the potential to be pipelined,
the execution times of others like gating are unaffected
by the training methods, so we ignore others in the
following analysis.

As shown in Figure 16, The usage of tensor
core(seq(n=1)) reduces the computation time by 58% and
44% and introduces 26% and 23% end-to-end perfor-
mance improvement compared with no TensorCore on
BERT-L and GPT-XL respectively. seq(n=6) introduces
12% and 4% additional time on the two models re-
spectively. The model size of GPT-XL is larger than
BERT-L and the operations per micro-batch are still
able to saturate the hardware resources, resulting in
a lower cost than BERT-L. Compared with seq(n=6),
MPMoE-pb reduces 30% and 23% communication and
computation time with 3% and 2.6% additional profil-
ing overhead for BERT-L and GPT-XL separately, and
MPMoE-pm achieves 27% and 22% reduction with no
more than 1% additional overhead. Considering the pro-
filing overhead, MPMoE-pm achieves comparable perfor-
mance with MPMoE-pb. The ideal performance of MP-
MoE is max{comm, comp} of seq(n=6). Both MPMoE-pb

N=1 N=2 N=4 N=8

2

4

6

8

No
rm

al
ize

d
Th

ro
ug

hp
ut

100%
77%

66%

63%

78%

72%

68%

100%
90%

85%

72%

93%

75%

71%

theoretical
FastMoE
FasterMoE
MPMoE-pb
MPMoE-pm

Fig. 17. Comparasions of Multi-Node scaling perfor-
mance on Adira, where N represents the number of
nodes and the y-axis shows the throughput normalized to
that of N = 1. The number annotated above each bar is
the percentage of actual scaling relative to ideal scaling.

and mPMoE-pm achieve 70% of the maximum theoretical
performance. Because we introduce memory copy oper-
ations for memory footprint efficiency, the discrepancy
in the theoretical performance is reasonable.

5.7 Scalability Analysis
As shown in Figure 17, we conduct a scalability analysis
of MPMoE on Adira with different numbers of nodes.
Each bar denotes the average results across different
workloads in Table 3 and batch sizes ranging from
32 to 128. We measured the throughput improvement
when running on multiple nodes compared to a single
node in Fig. 17. The ideal scaling performance of N
nodes is N times the single-node throughput. However,
network communication overhead inevitably reduces the
practical scaling factor. The experiments demonstrate
that MPMoE increases throughput by 5.76× (72% of the
ideal scaling) when scaling up to 8 nodes, while Faster-
MoE only achieves 5.4×. This highlights the superior
scalability of our approach compared to FasterMoE’s.
With slightly more profiling overhead, MPMoE-pb out-
performs MPMoE-pm since the profile-based algorithm
can find the optimal pipeline configuration as network
bandwidth changes with N. Compared to FastMoE and
FasterMoE, our methods consistently perform better,
demonstrating MPMoE’s stronger adaptability to vary-
ing cluster sizes.

6 RELATED WORK

Mixture-of-Experts (MoE).
Several techniques have been proposed to improve

the training efficiency of MoE models. Gating Dropout
[19] allows tokens to ignore the gating network and
keeps the input at the local machines, reducing cross-
machine communication. Different from MPMoE, Gat-
ing Dropout alters the routing strategy of MoE mod-
els, which can affect model accuracy. DeepSpeed MoE
[20] proposes the hierarchical All-to-All and implements
custom CUDA kernels to scale expert parallelism out

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

13

to many devices as the latency increases linearly with
the increase in devices. However, DeepSpeed MoE still
uses synchronous communication and does not take
pipelines to hide communication latency. Z-code multi-
lingual Multitask MoE model [26] proposes the Zero [25]
Redundancy Optimizer to reduce memory footprint.
Compared with Zero [25], we reduce not only the mem-
ory footprint of model states but also that of activa-
tions. In parallel with our work, [22] accelerates DNN
training using SPMD parallelism and overlap commu-
nication and computation of two micro-batches. Unlike
our approach, SPMD uses a fixed pipeline granularity
that cannot adapt to various workloads and running
environments. Lita [37] accelerates MoE training by
computation-communication overlapping and experts
packing to reduce the All-to-All transfer size. Smart-
MoE [38] concentrates on hybrid parallelism and au-
tomating the parallelization process. Compared with Lita
and FasterMoE, MPMoE not only improves communi-
cation efficiency but also reduces memory footprint to
alleviate device memory requirements. FasterMoE [21]
designs a congestion-avoiding expert selection strategy
that relieves network congestion to achieve lower train-
ing latency.

Data, Model, Pipeline, and Expert Parallelism. Par-
allelization is a key strategy for training large models
at scale. For a model that fits in the device memory
for training, data parallelism (DP) [39]–[41] is used to
scale training out to multiple devices. In DP, model
parameters are replicated on each device. At each step,
mini-batch data is divided evenly across all the data
parallel processes, such that each process executes the
forward pass and backward pass on a different subset of
data samples, and uses averaged gradients across pro-
cesses to update the model locally. To support training
giant models, model parallelism (MP) [42] and pipeline
parallelism (PP) [42], [43], Pipedream [34] splits the
model among processes in either vertical or horizontal
ways. Expert parallelism [14] is another form of model
parallelism targeting expert parameters of MoE models.
In expert parallelism, different experts are placed on
different devices and executed in parallel. When experts
reside on different GPU devices, explicit communication
using the All-to-All primitive is required.

Approaches for Memory Footprint Reduction. In ad-
dition to parallelism-based approaches, multiple lines of
work target reducing memory overheads of DL training.
[27] proposes an algorithm to checkpoint memory by
only storing the activations of a subset of layers, rather
than those of each layer as usual. The activations that
are discarded are recomputed when necessary during
the backward pass. [28], [44] exploits the heterogeneous
nature of modern hardware by offloading model states
to CPU memory through algorithmic design and virtu-
alized memory. Reducing the mini-batch size is effec-
tive at reducing the memory footprint during training.
However, it adversely affects the runtime of the training
process because smaller mini-batch size leads to under-

utilized GPU [45].

7 CONCLUSION

MoE is a promising technology for improving model
quality by scaling the neural network to an extra scale.
In this paper, we consider the high performance and
memory efficiency of MoE model training in a holistic
manner. First, we design a pipeline parallelism method
for reducing communication latency by overlapping
with the computation operations. Second, we analyze the
memory footprint breakdown of MoE training and pro-
pose efficient memory reuse strategies to reduce memory
requirements by eliminating memory redundancies. To-
ward this end, we design a profile-based algorithm and a
performance model for optimizing pipeline and memory
reuse jointly. We implement and integrate these features
into MPMoE and perform extensive evaluations. The
results show that MPMoE achieves 2.3× speedup and
reduces memory footprint by more than 30% compared
to FasterMoE.

ACKNOWLEDGMENT

This work was supported by the National Key
Research and Development Program of China
(2023YFE0205700), National Natural Science Foundation
of China (62302348, 62341410), Fundamental Research
Funds for the Central Universities (2042023kf0132),
General Program of Hubei Provincial Natural Science
Foundation of China (2023AFB831), the Young Teachers’
Subsidy Project (2042023kf0132), Special Fund of Hubei
Luojia Laboratory (220100016) and the Science and
Technology Development Fund (FDCT) Macau SAR
(File no. 0078/2023/AMJ).

REFERENCES

[1] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia, “Antman: Dynamic scaling on gpu clusters for deep
learning,” in Proc. of USENIX OSDI, 2020, pp. 533–548.

[2] D. Cheng, X. Zhou, Z. Ding, Y. Wang, and M. Ji, “Heterogeneity
aware workload management in distributed sustainable datacen-
ters,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 2, pp. 375–387, 2018.

[3] X. Jia, L. Jiang, A. Wang, W. Xiao, Z. Shi, J. Zhang, X. Li, L. Chen,
Y. Li, Z. Zheng et al., “Whale: Efficient giant model training
over heterogeneous gpus,” in USENIX Annual Technical Conference,
2022, pp. 673–688.

[4] S. Wang, O. J. Gonzalez, X. Zhou, T. Williams, B. D. Friedman,
M. Havemann, and T. Woo, “An efficient and non-intrusive gpu
scheduling framework for deep learning training systems,” in
Proc. IEEE/ACM SC, 2020.

[5] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in
Proceedings of NAACL-HLT, 2019, pp. 4171–4186.

[6] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, P. J. Liu et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer.” J. Mach. Learn.
Res., vol. 21, no. 140, pp. 1–67, 2020.

[7] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A ro-
bustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

14

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Lan-
guage models are few-shot learners,” Advances in neural informa-
tion processing systems, vol. 33, pp. 1877–1901, 2020.

[9] Z. Zhang, L. Ding, D. Cheng, X. Liu, M. Zhang, and D. Tao, “Bliss:
Robust sequence-to-sequence learning via self-supervised input
representation,” arXiv preprint arXiv:2204.07837, 2022.

[10] Q. Zhong, L. Ding, J. Liu, B. Du, and D. Tao, “E2s2: Encoding-
enhanced sequence-to-sequence pretraining for language under-
standing and generation,” arXiv preprint arXiv:2205.14912, 2022.

[11] Q. Zhong, L. Ding, Y. Zhan, Y. Qiao, Y. Wen, L. Shen, J. Liu, B. Yu,
B. Du, Y. Chen et al., “Toward efficient language model pretraining
and downstream adaptation via self-evolution: A case study on
superglue,” arXiv preprint arXiv:2212.01853, 2022.

[12] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer,” arXiv preprint arXiv:1701.06538,
2017.

[13] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with
conditional computation and automatic sharding,” arXiv preprint
arXiv:2006.16668, 2020.

[14] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,”
2021.

[15] M. Lewis, S. Bhosale, T. Dettmers, N. Goyal, and L. Zettlemoyer,
“Base layers: Simplifying training of large, sparse models,” in
Proc. of ICML. PMLR, 2021, pp. 6265–6274.

[16] K. S. Khorassani, C.-H. Chu, Q. G. Anthony, H. Subramoni, and
D. K. Panda, “Adaptive and hierarchical large message all-to-all
communication algorithms for large-scale dense gpu systems,” in
2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). IEEE, 2021, pp. 113–122.

[17] Q. Kang, R. Ross, R. Latham, S. Lee, A. Agrawal, A. Choudhary,
and W.-k. Liao, “Improving all-to-many personalized communica-
tion in two-phase i/o,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2020, pp. 1–13.

[18] K. Fan, T. Gilray, V. Pascucci, X. Huang, K. Micinski, and S. Ku-
mar, “Optimizing the bruck algorithm for non-uniform all-to-all
communication,” in Proceedings of the 31st International Symposium
on High-Performance Parallel and Distributed Computing, 2022, pp.
172–184.

[19] R. Liu, Y. J. Kim, A. Muzio, and H. Hassan, “Gating dropout:
Communication-efficient regularization for sparsely activated
transformers,” in Proc. of ICML. PMLR, 2022, pp. 13 782–13 792.

[20] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A.
Awan, J. Rasley, and Y. He, “Deepspeed-moe: Advancing mixture-
of-experts inference and training to power next-generation AI
scale,” in Proc. of ICML, vol. 162, 2022, pp. 18 332–18 346.

[21] J. He, J. Zhai, T. Antunes, H. Wang, F. Luo, S. Shi, and Q. Li,
“Fastermoe: modeling and optimizing training of large-scale dy-
namic pre-trained models,” in Proc. of ACM PPoPP, 2022, pp. 120–
134.

[22] S. Zhang, L. Diao, C. Wu, S. Wang, and W. Lin, “Accelerating
large-scale distributed neural network training with spmd paral-
lelism,” in Proceedings of the 13th Symposium on Cloud Computing,
2022, pp. 403–418.

[23] S. Wang, A. Pi, and X. Zhou, “Scalable distributed dl training:
Batching communication and computation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2019.

[24] NVIDIA, “Optimized primitives for collective multi-gpu commu-
nication,” https://github.com/NVIDIA/nccl.

[25] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in Proc.
of IEEE/ACM SC, 2020, pp. 1–16.

[26] Y. J. Kim, A. A. Awan, A. Muzio, A. F. C. Salinas, L. Lu, A. Hendy,
S. Rajbhandari, Y. He, and H. H. Awadalla, “Scalable and efficient
moe training for multitask multilingual models,” arXiv preprint
arXiv:2109.10465, 2021.

[27] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets
with sublinear memory cost,” arXiv preprint arXiv:1604.06174,
2016.

[28] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-
efficient neural network design,” in Proc. of IEEE MICRO, 2016,
pp. 1–13.

[29] E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez, J. Pool,
D. Nellans, and S. W. Keckler, “Buddy compression: Enabling
larger memory for deep learning and hpc workloads on gpus,”
in Proc. of ACM/IEEE ISCA, 2020, pp. 926–939.

[30] Z. Zhang, D. Yang, Y. Xia, L. Ding, D. Tao, X. Zhou, and D. Cheng,
“Mpipemoe: Memory efficient moe for pre-trained models with
adaptive pipeline parallelism,” in 2023 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2023, pp.
167–177.

[31] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari,
J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti et al.,
“Using deepspeed and megatron to train megatron-turing nlg
530b, a large-scale generative language model,” arXiv preprint
arXiv:2201.11990, 2022.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. of ICLR, 2015.

[33] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” Advances in neural
information processing systems, vol. 32, 2019.

[34] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Deva-
nur, G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient
pipeline parallel dnn training,” arXiv preprint arXiv:1806.03377,
2018.

[35] C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang,
R. Salas, J. Jose, P. Ram et al., “Tutel: Adaptive mixture-of-experts
at scale,” arXiv preprint arXiv:2206.03382, 2022.

[36] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fast-
moe: A fast mixture-of-expert training system,” arXiv preprint
arXiv:2103.13262, 2021.

[37] J. Li, Y. Jiang, Y. Zhu, C. Wang, and H. Xu, “Lita: Accelerating
distributed training of sparsely activated models,” arXiv preprint
arXiv:2210.17223, 2022.

[38] M. Zhai, J. He, Z. Ma, Z. Zong, R. Zhang, and J. Zhai,
“{SmartMoE}: Efficiently training {Sparsely-Activated} models
through combining offline and online parallelization,” in 2023
USENIX Annual Technical Conference (USENIX ATC 23), 2023, pp.
961–975.

[39] D. Yang, W. Rang, and D. Cheng, “Mitigating stragglers in the
decentralized training on heterogeneous clusters,” in Proceedings
of the 21st International Middleware Conference, 2020, pp. 386–399.

[40] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[41] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang et al., “Large scale dis-
tributed deep networks,” Advances in neural information processing
systems, vol. 25, 2012.

[42] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanan-
takool, P. Hawkins, H. Lee, M. Hong, C. Young et al., “Mesh-
tensorflow: Deep learning for supercomputers,” Advances in neural
information processing systems, vol. 31, 2018.

[43] Y. Xia, Z. Zhang, H. Wang, D. Yang, X. Zhou, and D. Cheng,
“Redundancy-free high-performance dynamic gnn training with
hierarchical pipeline parallelism,” in Proceedings of the 32nd In-
ternational Symposium on High-Performance Parallel and Distributed
Computing, 2023, pp. 17–30.

[44] B. Pudipeddi, M. Mesmakhosroshahi, J. Xi, and S. Bharadwaj,
“Training large neural networks with constant memory using a
new execution algorithm,” arXiv preprint arXiv:2002.05645, 2020.

[45] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
sgd: Training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677,
2017.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

15

Zheng Zhang (zzhang3031@whu.edu.cn) re-
ceived his B.S degree in Computer Science from
School of Computer Science, Wuhan University
in 2017. He is currently pursuing his Ph.D in
Computer Science at Wuhan University. His re-
search interests are distributed deep learning
model training and deployment, DNN network
optimization.

Yaqi Xia (yaqixia@whu.edu.cn) received his BS
and MS degrees in Electrical Engineering from
the Xidian University in 2018 and 2021, re-
spectively. He is currently pursuing his Ph.D.
in Computer Science at Wuhan University. His
research interests are distributed deep learning
model training and deployment, and graph neu-
ral network (GNN) optimization.

Hulin Wang (wonghulin@whu.edu.cn) received
his B.S degree in Computer Science from
School of Computer Science, Wuhan Univer-
sity in 2017. He is currently pursuing his Ph.D
in Computer Science at Wuhan University. His
research interests are GPU kernel optimization
and inference of DNN models.

Donglin Yang (dongliny@nvidia.com) received
his B.S. degree in Electrical Engineering from
Sun Yat-sen University and his Ph.D. in the
Computer Science Department at the University
of North Carolina at Charlotte in 2022. He is
currently a Deep Learning Software Engineer at
NVIDIA, working on TensorFlow Core/XLA.

Chuang Hu (handc@whu.edu.cn) received his
B.S and M.S. degrees in Computer Science
from Wuhan University in 2013 and 2016. He
received his Ph.D degree from the Hong Kong
Polytechnic University in 2019. He is currently
an Associate Researcher in the School of Com-
puter Science at Wuhan University. His research
interests include edge learning, federated learn-
ing/analytics, and distributed computing.

Xiaobo Zhou (waynexzhou@um.edu.mo) ob-
tained the BS, MS, and PhD degrees in Com-
puter Science from Nanjing University, in 1994,
1997, and 2000, respectively. Currently he is a
Distinguished Professor of IOTSC and Depart-
ment of Computer and Information Sciences,
University of Macau. His research lies in Dis-
tributed Systems and Cloud Computing. He
serves as the Chair of IEEE Technical Commu-
nity in Distributed Processing. He is a senior
member of the IEEE.

Dazhao Cheng (dcheng@whu.edu.cn) received
his B.S and M.S degrees in Electrical Engineer-
ing from the Hefei University of Technology in
2006 and the University of Science and Technol-
ogy of China in 2009. He received his Ph.D from
the University of Colorado at Colorado Springs
in 2016. He was an AP at the University of
North Carolina at Charlotte in 2016-2020. He is
currently a professor in the School of Computer
Science at Wuhan University. His research inter-
ests include big data and cloud computing.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3385639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 15,2024 at 08:11:13 UTC from IEEE Xplore. Restrictions apply.

