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Abstract—In this paper, we present an optimized framework
that can efficiently perform massive spatial queries on the current
GPUs. To benefit the widely adopted filter-and-verify paradigm
from GPUs, the skewed workloads are first associated with
certain cells in a scaled spatial grid, such that the following
range verification cost against the massive spatial objects can
be significantly reduced. Particularly on the Kepler architecture,
we highlight a two-level scheduling method to exploit good data
localities by developing a novel dynamic scheduling method.
Based on this virtual warp-based scheduling method, groups of
threads can compete for the unbalanced tasks to ensure good load
balance. We conduct various of skewed workloads with different
object positions and query distributions, to evaluate our opti-
mized methods. Experimental results show that, as compared to
the existing fixed-size allocation methods, the proposed adaptive
scheduling strategies improve the query throughput by one order
of magnitude.

Index Terms—GPU; spatial join; virtual warping; preemption

I. INTRODUCTION

In the last decade, the Graphics Processing Unit (GPU)

has evolved from being a graphics-specialized processor into

a programmable processor for massive parallelism. The im-

mense computational power that GPU can offer accelerated

the relevant researches, in both data-intensive fields [1] and

computational-bound applications [2], to achieve tremendous

performance in general-purpose computing. While there are

a variety of optimisation techniques, building effective data-

intensive engines for GPU processing depends on (a) regu-

larity of memory accesses [3], and (b) homogeneity of the

computing behaviors [4]. Generally combining hierarchically

scheduling methods, a warp-based scheduler concentrates [5]

on dispatching a bunch of threads onto the encapsulated

Processing Units (PUs) [6].

As a typical scenario of data-intensive applications, the

geo-information processing [7] has received a lot of attention

in recent years. A classic geo-positioned context requires to

answer variant queries over massive moving objects, generally

subjected to some spatial constraints to guarantee the distance

between the objects and the queries no larger than a certain

degree. Based on a general-purpose index structure, the com-

parison cost of these queries can be reduced to a large extent

[8]. It’s of interests to shoe up variant position-rich applica-

tions, such as tourist services, mobile commerce, traffic control

and logistics management, by constructing developed process-

ing techniques on the emerging high-performance hardwares.

To benefit the filter-and-verify paradigm, many optimisation

techniques have been proposed specifically for multi-cores

CPU platforms, regarding how to effectively improve memory

efficiencies [9] and computing parallelism [10]. However, few

researches concerned with how to apply such applications

on the massive GPU cores, with thorough considerations to

bridge the gap between these randomly skewed accesses and

the regular and homogeneous requirements of GPUs.

In this paper, we present an optimized framework that can

efficiently schedule massive spatial queries on the current G-

PUs. In terms of a general distribution method, this framework

associates a bunch of range queries with a fixed scale of

spatial grid, such that the range verification cost against the

massive spatial objects can be significantly reduced. Based on

the Kepler architecture, we highlight a two-level scheduling

method to exploit good data localities by conducting a novel

preemption-based dynamic scheduling method. We notice that,

this method regularizes the tasks across the virtual warps in

terms of common atomic operations, it can thus be extended to

the mainstream massive-cores platforms. Experimental results

show that, as compared to the fixed-size allocation strategy,

the proposed methods improve the query throughput by one

order of magnitude.

II. RELATED WORKS

High-performance techniques have been widely introduced

by the data-intensive paradigm over the years [9]. Besides the

moving objects processing context studied in this research, we

also notice the iterative computation for machine learning [2],

merging operations in databases [1] and traversing over the

hierarchical structures [4], [15]. With dramatic development of

the GPU in recent years, we also witnessed growing interest

in this kind of modern processors in many problem domains.

In the GPU architecture, massive cores are integrated in a

chip to realize largest degrees of data-level parallelism, with

wide vector (SIMD) units to drive these cores in SIMT exe-

cution model [2]. While many applications benefit from GPU,

its excess requirements for synchronization accesses hinder

the related engines from complex indexes [1] or consistency

models [19]. The traditional operations, such as sort [14] and

matrix computation [12], [17], can be substantially scaled up

with a regular data layout.

In the cases where the computational model can be hardly

regularized, we could resort to some effective block scheduling

strategies [20] or their fine-gained improvements [19]. By pro-

viding artificial barrier synchronization, Lo et al [3] identified

the program pattern to avoid the irregular accesses. The idea of

DeNovo was used in [19] to exploit reuse of written data and
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synchronization variables across synchronization boundaries.

Similar strategies were also employed in [20]. There are many

other GPU-enabled techniques, such as dynamic parallelism

[16] and atomic-free optimisations [13]. Our work in this paper

is on the flatten query pattern, and we leave the applications

of these techniques in the complex computing context as our

future directions.

The general GPU scheduling techniques can hardly be

directly applied to our research, where an index is necessary

to prune the candidate spatial objects [7]. In this paradigm,

we have witnessed some CPU-based parallel optimisations

[8], [10]. On the current GPUs, Ward [11] directly dive the

spatial join with their pruning algorithm, without any thorough

consideration of synchronization requirements of the GPU. We

will concentrate on how to efficiently drive general spatial

query by deliberative scheduling optimisations.

III. DRIVING SPATIAL JOIN IN GPU

This section gives an overview of the GPU execution model,

with its advantages of the efficient TB scheduling over recent

architectures. Its massive parallelism aspect motivates us to

drive efficient queries based on the spatial partitioning method.

A. Hierarchical Viewpoint of GPU

As the demand for high-performance computing increases

across many areas, industrial community continues to achieve

extraordinarily powerful GPU computing architectures. For

providing flexibly programming supports and massive paral-

lelism, the GPUs generally offer groups of threads to drive

the underlying processing units (PUs) to execute in parallel.

By providing the Barrier synchronization across the

PUs, a mechanism to stop executing at certain points can be

achieved to ensure the PUs to reach these desired points before

they go ahead with the following loads.

In the recent architectures, GPU programs generally con-

sist of multiple kernels, each contains functions that can be

executed by thousands of light-weight threads. These threads

are launched as grid of thread blocks (TBs), so that one can

assign all of its entire threads into a Scheduler to occupy

groups of PUs. Based on a desired round-robin strategy, in

each cycle, the Scheduler activates a certain number of

threads in each TB. While there are various of techniques

to drive massive PUs, very often each PU group and their

encapsulated resources can be regularized by the warp-based

scheduler. In each cycle, a certain number of warps are issued

to execute concurrently. Through barrier synchronization and

shared memory, a TB can thus be featured as a set of concur-

rently executing threads that can cooperate among themselves

or become blocked due to the stalled cycles derived from the

warp scheduling.

Let’s take Kepler GK110 to illustrate how massive PUs are

collaborated to perform a computational task in parallel. On a

full GK110 implementation that is composed of 15 Streaming

Multiprocessors (SMXs) and 64-bit memory controller, the

entire PUs (Cores) are grouped into the physical SMXs, each

consists of 192 Cores concurrently driven by four warps. We
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Fig. 1: Illustration of Kepler GK110 architecture, with grids

of thread blocks (TBs) mapping onto their SMXs.

should notice that, in general data-parallel paradigms, each TB

has a per-block shared memory space targeting at inter-thread

communication, data sharing, and result sharing.

As given in Figure 1, a set of TB grids is delivered to

a Grid Management Units (GMU), where each TB can be

depicted as a desired functional kernel. In terms of a one-

to-one mapping from the TBs to the SMXs, Kepler 110

allow kernels to launch task directly on GPU. By this way,

the SMX scheduler dispatches the common kernel onto the

entire SMXs in a round-robin fashion, with the TBs being

activated in a TB ID increasing order. Based on the migration

between the two queues, each active TB is dispatched onto

a SMX to occupy the encapsulated resources in round-robin.

These resources incorporate 64 KB of on-chip memory that

can be configured as 48KB of shared memory with 16KB

of L1 cache. Kepler 110 provides a quad warp scheduler for

each SMX to select four warps each schedules 32 threads on

two independent instructions in each cycle. It also expands

the 64-bit atomic operations in global memory, such that the

threads can issue read-modify-write operations on shared data

structures concurrently.

B. Partition-based Spatial Data Organization

A spatial range query is to obtain the spatial objects

that have the form of multi-dimensional points, polylines or

polygons, so that these objects and the query condition satisfy

some specific spatial relationships. Although there exists nine

basic spatial relationships across the spatial data types, the

spatial overlap is generally taken as the pivot to support the

common spatial relationships. In the moving objects context,

the objects mainly include massive spatial points, each is

composed of a two-dimensional (2D) coordinates. By a range

of maximal bounding box (MBR) of a query, the moving

objects query is to generate the points that lie in (or meet

with) a derived MBR. The advanced Nearest Neighbors (NN)

query and its variants can be translated into a filter-and-verify

workflow based on the range query.

Given a query range r : (xmin, ymin, xmax, ymax) on

a collection of objects O = {o : 〈id, pos(x, y)〉}, a näive

strategy is to scan all the objects to check whether o.pos lies

in r, and return o.id if it comes true or skip it otherwise.

To reduce the complexity, an index is generally used to filter
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masses of objects that are outside the indexed entries with their

MBR intersecting with r. In the concurrent execution on an

in-memory environments, the spatial partitioning methods are

superior to the point-clustering ones due to the small redundant

entries. Although we study on the 2D grid structure, the related

techniques can support higher dimensions as well.

Fig. 2: A grid structure dividing the spatial domain into 4 ×
4 cells, each maintains their objects by the fixed-size buckets.

As shown in Figure 2, our 2D grid orthogonally divides the

spatial domain into the segments in the two spatial dimensions,

resulting in a collection of disjoint cells, each has the form

of cell : 〈CellID, coords(xmin, ymin, xmax, ymax)〉 with

a list of bucketID attached. For clarity, we denote their cellID

as the numbers 1 − 16 in the logical view of the grid. In

each cell, the involved objects are maintained in a series

of buckets, with their point positions inside an Entry. A

range query r is translated into two stages, where the first

stage is to calculate the cells that are intersecting with r,

and the second stage compares the objects positions against r.

C. Query-Centered Spatial Join

There are plentiful researches regarding how to do efficient

spatial queries on multi-core platforms. In GPUs, the straight-

forward implementations usually results in poor spatial locali-

ty, workload balance and complexity control flow, making the

query throughput suboptimal.

Due to the skewed workloads, it’s difficultly to guarantee

good localities for spatial queries, which results in suboptimal

throughput in GPUs. In real-world scenarios, the skewness is

derived from two folds. First, the moving points are substan-

tially gathered at some regions, where the point densities are

far more than the other regions. In addition, user interests often

focus on some “hotspot” which is also the dense region of the

spatial domain. Since the grid structure uniformly divides the

spatial domain, the above-mentioned skewness may result in

very unbalanced workloads across their logical executors.

In Figure 2, suppose each bucket size has a maximal

capacity of 128, cell 15 has 100 moving objects, such that the

query (with its range intersected with cell 6−8, 10−12, 14−
16) needs to access one bucket in cell 15 as well as all of its

100 objects. In contrast, the cost on another cell cell 16, with

200 objects inside, doubles the cost derived from cell 15. If

we drive the same query on the two cells separately by two

threads in a GPU, these two different capacities will most

likely make the thread run on cell 15 stall half of its running

time. Even worse, since we generally configure a TB on the

consecutive cells, the corresponding threads need to access

the dispersing linked buckets, which make these threads can

hardly exploit the SIMT superiority of GPUs.

Algorithm 1: Dispatch queries based on a grid structure.

Input: Query: query vector; qd: whether query driven
Output: RCA: Requests associating cells and queries.

1 T ID ← threadIdx + blockIdx * blockDim;
2 i← T ID ; // Index of the query vector

3 while i < N do
4 query ← Query[i] ; // Get the query

5 cells ← CellsCoveredBy(query) ; // Overlap

6 for cell in cells do
7 if qd then // Query driven

8 RCA[queryId].list.writeRequest(cell);
9 RCA[queryId].meta.num++;

10 else // Cell centered

11 rid← atomicAdd(RCA[cellId].meta.num);
12 RCA[cellId].list[rid].writeReqeust(query);
13 end
14 end
15 i← i + blockNum * blockDim; // Step ahead

16 end

To improve the thread-access localities, we propose a gen-

eral dispatching strategy to support both the query-driven and

cell-centered optimisation techniques in the following sections.

Our motivation is to translate the näive round-robin execution

of massive range queries into a two-stages join, where

the first stage constructs a vector of requests mapping the

objects to their intersected queries, so as to support the join

in the second stage to batched answer these requests.

As shown in Algorithm 1, by using a TB length parameter

blockDim (in line 1), the entire threads dispatch the queries

based on a grid in parallel. We use a core list structure RCA

to maintain the requests in the both strategies. If we use the

query-driven processing method, RCA corresponds to the full

query vector, with the associated cells in each element. In a

coarse level, if a query overlaps a candidate cell (generated

in line 5), the cellId will be written into the list field of the

queryIdth element in RCA. Since the entire threads handle

a vector space of input queries with their stepping granularity

blockIdx.x * blockDim.x (as shown in line 2 and 15), this

distribution can exploit the SIMT superiority of GPUs. While

in the cell-centered method, each cell in line 12 has a field

cell ID, which denotes a index of global vector to maintain the

cell list. In each element of this cell list, a header is maintained

to redirect the objects requirement to a linked list of fixed-size

buckets.

We generate the candidate cells by CellsCoveredBy(),

which calculates the candidate cells of each range in terms of

the spatial-partitioning grid structure. This direct computation

doesn’t depend on the hierarchical structures of the traditional

indexes, so that the efficiency of the parallel threads can be

guaranteed in GPUs.
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IV. CELL-DRIVEN EXECUTION ON VIRTUAL WARP

This section highlights our cell-driven execution of a batch

of spatial queries. It places two processing strategies on groups

of threads to run the queries on massive partitioned objects.

A. Alternative Execution Strategies

Besides the widely-adopted query-driven strategy, a cell-

centered processing method is presented in the virtual warp

context. Our basic idea is to drive multiple queries related to

a common cell in consecutive threads in a TB, so that the warp

scheduler can dispatch these threads in the same cycle of each

SMX. In addition, since the buckets in each cell is significantly

larger than each single query, this cell-centered method ensures

the sibling threads to handle the objects altogether, taking full

advantage of the data locality based on regular object accesses.
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Fig. 3: Alternative strategies of spatial join on a cell-centered

structure, with inverse access behaviors on queries and cells.

We demonstrate the both strategies in Figure 3, where a list

of queries are executed by four threads with their candidate

cells accessed in different behaviors. As shown in Figure 3A.,

once the four threads are active, the query-driven strategy

shares a common query and extract the buckets in each cell,

to verify whether the objects are within the range. In a high

level, each thread needs to obtain their local cell to perform

the verification against the query. Inversely, the cell-centered

method (depicted in Figure 3B) shares a common cell and

try to schedule the grouping threads to simultaneously handle

the related queries that has been distributed by Algorithm 1.

Once a thread make the candidate objects ready in a global

space, all the in-group threads verify the positions of these

objects against their private query. It’s highly desirable that, as

compared to the query-driven one, this cell-centered strategy

can avoid the irregular access of chunks of object buckets.

While in a scene where the queries is substantially skew, an

extremely dense region could make its bounded “bottleneck”

thread significantly slow, hindering the other sibling ones.

B. Grouping Threads by Virtual Warps

We next show how we improve the above-mentioned “bot-

tleneck” threads by grouping them into Virtual Warps.

While in the common spatial context, a long-term thread under

a one-dimensional TB configuration can consume too many

cycles because it needs to process the entire queries related to

a cell. Alleviating the workloads of these “bottleneck” threads

is crucial to decrease the stalled time of their sibling ones.

We implement the Virtual Warps by logically dividing

the threads that belong to each TB into a set of subgroups,

where each subgroup of threads share the instructions and

hardware resources similar to what they can do among TB.

With careful software considerations, such as the warp-level

synchronization and homogeneous workload dispatching, we

concentrate on providing a flexible micro-system to drive these

grouping threads to cooperate with lightweight data access. By

choosing one of these inner-warp threads as a controller, we

can synchronize these threads as will. We abstract this warp

synchronization as shown in Algorithm 2. For simplic-

ity, we prepare a fixed warp size W SZ as a global variable,

such that each thread within a warp can be synchronized based

on their warp identifier W ID. As will show in the sequel,

after all the inner-warp threads finish their current subtask,

a Virtual Signal vector VS with a offset W ID can be

used to trigger these threads to execute the next round.

Algorithm 2: VW synchronize(): Warp synchronization

1 atomicAdd(VS[W ID]);
2 while VS[W ID] % W SZ != 0 do
3 nothing;
4 end

Another interesting question is how to produce homoge-

neous workloads, i.e., how to guarantee the balance of these

inner-warp threads. In terms of warp synchronization,

we call the workload between two consecutive synchroniza-

tions of each thread as a subtask. In a cell-centered task

that is generated by Algorithm 1 in each element of RCA, we

can regard all the overlapped queries against a same cell as

homogeneous subtasks. Since a cell is shared by all of the

inner-warp threads, the cost of comparing the entire objects to

each related query has a constant complexity. If we were to run

each query on a thread, the workload of these homogeneous

subtasks can be easily guaranteed. Let’s take Figure 3B as

an example, the four threads have almost the same cost to join

Cell (with its two buckets) with each query of Q1 ∼ Q4.

C. Cell-Centered Join Implementation

So far, we present the basic ideas of the both join strategies.

As the query-driven join can be easily realized by changing

RCA into its queryId-derived form (as given in Algorithm 1),

we focus on the cell-centered method in the remaining section

and leave the comparison in Section VI.

We suppose a request list RCA is generated by Algorithm 1,

with M cell-centered requests inside. We deliberate a three-

level structure for the entire threads, respectively with their

parameters of GPU grid size blockNum, block size blockDim

and warp size W SZ. In other words, we have blockDim /

W SZ warps in each TB, where each thread with its global

identifier T ID can determine its warp identifer by W ID =

T ID / W SZ as well as derive its local offset in a warp as

W OS = T ID % W SZ. Corresponding, the cell-centered join

implementation can described as shown in Algorithm 3.
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Algorithm 3: Cell-centered spatial join using a grid.

Input: RCA: Request list with query area
Output: QR: List associated queries and their results.

1 T ID ← threadId + blockIdx * blockDim;
2 W ID ← T ID / W SZ; W OS ← T ID % W SZ ;
3 STRIDE ← blockNum * blockDim / W SZ;
4 i← W ID; // Corresponding to W_ID

5 while i < M do
6 rca ← RCA[i]; // Warp-based acquisition

7 for j from W OS to rca.meta.num step W SZ do
8 query ← rca.list[j]; // Step within warp

9 for object in cells[rca.meta.cellId].buckets do
10 if object.inRange(query) then
11 QR[query].writeObject(object);
12 end
13 end
14 end
15 i← i + STRIDE; // Step ahead

16 end

Once Algorithm 1 produces a RCA list, Algorithm 3 starts

initializing the thread and warp parameters (respectively in

lines 1 and 2). We divide the essential join into two levels,

where the top level regards the warp-based scheduling, with a

step size STRIDE to divide ahead the entire threads (of total

blockNum of GPU grids, each has blockDim threads). In each

warp, as shown in line 6, a request is obtained by the inner-

warp threads in terms of their warp identifier. For each thread,

a query related to a cell by the warp identifier (in lines 4

and 6) is located by the thread identifier in line 7. This cell-

centered dispatching guarantees that, in terms of the common

cell sharing across the inner-warp threads, the threads can join

their local queries on the common buckets in a regular access

behavior. The actual join work from line 9 to 13 compares

the objects to the query range in line 10 based on the spatial

coordinates in round-robin (line 7).

V. PREEMPTION-BASED WARP SCHEDULING

This section presents how we provide better balance across

the warps. Based on the cell-centered dispatching, it employs

atomic operations to let the warps racing over the request

queue RCA to avoid the stalled time of the short-term threads.

A. Motivation of Preemption

In the proposed strategy, each warp concentrates on exe-

cuting the time-consuming spatial verification in terms of the

query ranges and the pruned cells . As shown in Section IV-C,

this cell-centered strategy ensures the load balance within each

warp, but its fixed-size stepping (in line 15 of Algorithm 3)

hinders the load balance across the warps. Even worse, one

generally introduces a periodical synchronization for sake of

regular memory accesses [16] or moving position freshment

[7], which results in suboptimal throughput derived from the

unbalanced workloads across different warps.

We introduce the atomic operation atomicAdd() to offer

a racing strategy across the warps. Our motivation aims that,

in the massive threads environments, dispatching new tasks

dynamically to the warps that have obtained a scheduling cycle

and competed its current task is helpful to reduce the stalled

time. In addition, grouping the threads into warps can also re-

duce the racing intensity of this warp-level preemption. As

compared to the parallel scheduling in Section IV with a fixed

step size, this on-demand strategy relaxes the requirement of

the even division of the entire warps.
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Fig. 4: Virtual Warping preemption based on an atomic add.

As shown in Figure 4, in the proposed preemption-based

scheduling strategy, the entire warps compete for the requests

by a global tick. By conducting an atomic operation on this

tick, the head of a warp tries to obtain a request when

all of its sibling threads are free. In detail, the tick keeps

an increasing index of the request queue, which monotonously

differentiates the elements of the queue into two parts. In each

time tick is increased by 1, the selected request will become

a completed one since the entire warps will no longer choose

its index in the future contention. The remaining structures,

such as the cell mapping and the associated queries of each

request, are the same as what we have presented in Section IV.

B. Dynamic Warp Scheduling

The dynamic warp scheduling can be realized by providing

two inner-warp controllers, i.e., Virtual Signal vector (VS)

and Notice Signal vector (NS). As presented in Section IV-B,

each element of the VS is used to synchronize the inner-warp

threads to collaborate on the cell-centered tasks. To share

the request within a warp, a head thread of each warp is

responsible for preempting on the global tick and writing

its acquisition onto a shared memory region NS.

Algorithm 4 details our preemption-based warp schedul-

ing method. Similar to Algorithm 3, it employs the cell-

based join paradigm to highlight how this dynamic scheduling

can be realized on the proposed join context. To share the

above-mentioned vectors VS and NS within each warp, an

initialization procedure is triggered by the root thread of the

total blockNum * blockDim threads. It initializes tick S and

allocates the two shared vectors VS and NS with their vector

length as the warp number ⌈blockNum * blockDim / W SZ⌉.

We omit its formal details due to page limitations.

Very different from Algorithm 3, this preemption-based

method employs an adaptive warp scheduling instead of the

previous fixed-size stepping. As shown in line 6, the upcoming

counter of tick S is competed by all the heads. In each
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Algorithm 4: Warp preemption by the atomic operations

Input: RCA: Request list with query area.
Output: QR: List associated queries and their results.

1 T ID ← threadIdx + blockIdx * blockDim;
2 W ID ← T ID / W SZ; W OS ← T ID % W SZ;
3 initialize(S, VS, NS); // Initialization

4 while true do
5 if W OS == 0 then // The head of a warp

6 s← atomicAdd(&S, 1); // Preempt on S

7 if s < N then
8 NS[W ID] ← s; // Share s in warp

9 end
10 end
11 VW synchronize(); // Warp synchronization

12 if s ≥ N then
13 break;
14 end
15 rca ← RCA[NS[W ID]]; // Get request

16 join on rca as lines 7∼14 in Algorithm 3;
17 end

round, after a head (denoted by line 5) acquired a counter,

its sibling threads (synchronized by Algorithm 2) begin to

access the acquired request after a warp synchronization in

line 11. In each warp, these sibling threads share a common

request directed by the index NS[W ID], so that they can

handle their corresponding queries in round-robin, as given

in lines 7∼14 of Algorithm 3. This method focuses on the

global contention towards tick S across all the warps. It

will terminate at line 12 when all the requests are processed.

C. Analysis on Join Workloads

It’s clear here that, in our proposed scheduling framework,

massive spatial range queries are conducted on a two-

stage executing context. We employ a round-robin TB schedul-

ing in the first dispatching stage, to associate the range

queries with their related cells. While in the second veri-

fication stage, a two-level scheduling method is proposed to

guarantee load balances as well as regular memory accesses.

By analyzing the cost of the staged workloads, we next show

why we arrange the entire threads in such different ways in

the both stages.

In the dispatching stage, the computing model can be de-

scribed as the homogeneous workloads to associate the queries

with their overlapping cells. As discussed in Section III-C,

the computation cost of the overlapping cells is trivial since

it runs on-the-fly, without extra memory access besides the

algorithmic input and output. We can respectively formalize

the Dispatching Computation and Memory access costs as

C(D) =
∑N

i=0
|cells(Query[i])| and (1)

M(D) = |Query|+C(D) + Ĉ(D), (2)

where |cells| denotes the cell number and Ĉ(D) denotes the

atomic operating cost of total C(D) memory accesses. Since

Algorithm 1 doesn’t use thread synchronization for each batch

of queries, it can avoid the stalled time at the cost of irregular

memory accesses. In addition, the cell-based dispatching will

bring the memory contention cost due to the introduction of the

atomic operations. Our experiments show that, as compared to

the significantly heavy workloads of the verification stage, this

contention cost can hardly impact the total throughput.

In the actual join stage of the cell-centered processing, each

warp controls their working threads to collaboratively perform

the queries against a common cell. This results in the access

cost quite different from the total overlapping cardinality as

given in Equation 1. Let’s suppose each cell has at least one

query to be related, the total Computing and Memory access

costs in the Verification stage using the cell-centered strategy

can be approximatively expressed as

C(V ) =
∑N

i=0

∑
cell∈cells(Query[i])

‖cell‖ and (3)

M(V ) =
∑

cell∈CELLS
|buckets(cell)|+

∣∣∣ ̂CELLS
∣∣∣ , (4)

where ‖cell‖ denotes the total object number within a cell.

As analyzed in the previous sections, in the proposed cell-

centered processing framework, the total computing cost given

in Equation 3 can be evenly shared by the entire threads based

on the deliberative warp scheduling methods. It’s naturally

much more superior to its query-driven counterpart when the

objects and queries are both skewed. The extra atomic opera-

tions in the cell-centered strategy, with their atomic operating

cost

∣∣∣ ̂CELLS
∣∣∣ given in equation 4, can bring significant access

cost when massive cells are conducted. We will analyze these

interesting singular points in our experiments.

VI. EXPERIMENTAL EVALUATION

To evaluate the proposed methods, we conducted our ex-

periments on a data set by using (and extending the object

cardinality of) the MOBenchmark [7], with up to 100 millions

of moving objects in a square region of 100km × 100km. To

measure the availability of the methods in skewed workloads,

we selected a fixed number of points as the “hotspots”,

with their query centers or moving objects normally dis-

tributed within a certain radius. We denoted the data set

with desired numbers of “hotspots” as the Gaussian data,

with the queries concentrating on some “hotspot regions” the

Gaussian query. This synthetic roadmap, with controllable

balancing factors on the moving objects and queries, has

been widely used to measure the availability of the related

optimisations [7], [11].

We applied two levels of scheduling methods Virtual Warps

(VW) and Dynamical Scheduling (DS, based on preemption)

orthogonally onto the two join strategies, i.e., Query-Driven

(QD) and Cell-Centered (CC). We named the related methods

as the join strategies plus their (compositional) scheduling

methods. For example, CC+VW+DS stands for Cell-Centered

join optimized by Virtual Warp and Dynamical Scheduling.

We conducted our experiments on a host Server with dual

Intel Xeon E5-2650(2.4GHz) CPUs and 16GB memory. We

executed all the GPU programs on a NVIDIA (Kepler) Tesla

K40c GPU. The programs were compiled by CUDA-8.0 and

run on a 64-bits CentOS-7.2 with linux kernel-3.10.0. We
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configured 10 blocks each consisted of 1024 threads for the

baseline methods, which was the best parameter for our QD

and CC implementations. The virtual warp-based methods

scheduled each virtual warp together, which may regard the

thread groups as its scheduling units. We thus increased the

block parameters up to 40, each was composed of 32 warps ×
32 threads, to evaluate the remaining four optimized methods.

A. Cell Regularization

We conducted the first experiment with 1 millions queries,

with their 10 millions objects dispersing over desired num-

bers of “hotspots”. It’s well-known that the cell granularity

heavily impacts the query efficiency. We used 0.064 as the

range to cover random squares, with their side lengthes of

0.064 × 100km = 6.4km, or equally a square of 40.96km2.

By varying the cell numbers, we measured the running time

(in second) as plotted in Figure 5, where the four sub-figures

gave the same experiment on different scale of data skewness,

respectively in uniform distribution and Gaussian data

within 10, 100, 1000 gaussian cores. The both coordinate axes

are logarithmic, which made some differences too small to see.
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(d) Query on 1k gaussian cores

Fig. 5: Query efficiencies in different granularities of grid cell.

All the four results revealed that, with the increasing cell

granularities, the QD family exhibited stable tendencies of run-

ning time. The VW and DS-intensified versions outperformed

QD if we chose a larger cell number in very skewed dataset,

i.e., the QD+VW and QD+VW+DS respectively saved 81%

and 83% running time as that of QD in Figure 5c. While in the

CC family, a significant saddle tendency was demonstrated in

all the four data sets. As analyzed in Section V-C, too elaborate

cells will result in huge numbers of cells, which will definitely

increase the scheduling rounds in our CC strategy. As shown

in the figures, the CCs exhibited rare superiorities as compared

to the QDs in a cell granularity of 2048. Reversely, when we

chose extremely small granularities, i.e., 64, the weak pruning

power from the spatial grid structure depressed the superiority

of CCs, which made CCs very close to QDs. If the both

optimized versions were run on their best granularities, CCs

outperformed QDs by one order of magnitude, i.e., in gran-

ularity 512 of CCs. Given the best granularity, CC+VW+DS

showed 7X superiorities to CC+VW.

B. Query Range

This experiment fixed the cell granularity with 128×128, to

measure different skewness of both 1 million queries and 10

million objects. By varying the query range exponentially from

0.001 to 0.256, we plotted the results as shown in Figure 6.
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Fig. 6: Query efficiencies by varying the query ranges.

We could get better results of CCs by choosing the best

cell granularity, such as 512 in Figure 5. Even in a moderate

granularity 128, as revealed in Figure 6, the both optimized

versions on CC were significantly better than their QD-based

competitors. In Figure 6a and 6c, the formers were at most 11X

better than their competitors. Due to the balanced subtasks

in CCs in the moderate granularity 128, in this experiments,

CC+VW+DS was not such superior to CC+VW. However, the

both versions saved more than 90% running time of that of

their original CC. We also noticed VW+DS optimisations, in

both QD and CC cases, were increasingly superior to their

baselines with the increase of the query skewness and range.

C. Scalability

Our last experiment used 100 Gaussian cores of mov-

ing objects, with the cardinalities varying from 10 millions to

100 millions. We respectively employed the skew query ange

0.002, 0.008, 0.032, 0.128 to measure the scalability of the

proposed methods. With a fixed granularity 256, Figures 7

plotted the running time on the four query workloads.

It clearly revealed that, using preemptions on the both

baselines can introduce significant benefits due to its balancing

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:53 UTC from IEEE Xplore.  Restrictions apply. 



Object # (× 10
7
)

1 2 3 4 5 6 7 8 9 10

R
u

n
ti
m

e
 (

s
)

10
-1

10
0

10
1

QD

QD+VW

QD+VW+DS

CC

CC+VW

CC+VW+DS

(a) Range 0.002

Object # (× 10
7
)

1 2 3 4 5 6 7 8 9 10

R
u

n
ti
m

e
 (

s
)

10
-1

10
0

10
1

10
2

QD

QD+VW

QD+VW+DS

CC

CC+VW

CC+VW+DS

(b) Range 0.008

Object # (× 10
7
)

1 2 3 4 5 6 7 8 9 10

R
u

n
ti
m

e
 (

s
)

10
-1

10
0

10
1

10
2

10
3

QD

QD+VW

QD+VW+DS

CC

CC+VW

CC+VW+DS

(c) Range 0.032

Object # (× 10
7
)

1 2 3 4 5 6 7 8 9 10

R
u

n
ti
m

e
 (

s
)

10
-1

10
0

10
1

10
2

10
3

10
4

QD

QD+VW

QD+VW+DS

CC

CC+VW

CC+VW+DS

(d) Range 0.128

Fig. 7: Scalability experiments in different query ranges.

considerations across the different scheduling levels. Very

different from what we have observed in Figure 6, a larger

cell granularity 256 in this experiment made CC+VW+DS

nearly save 70% running time of that of CC+VW. Interestingly,

QD+VW+DS was on average 10X faster than QD+VW when

the object cardinalities were beyond 20 millions. One reason of

this result could be ascribed to the density insensitivity of the

QD strategy. In QDs, each warp concentrated on processing

a range query, with their related cells being separately

handled by the sibling threads; and this held in CC vice vasa.

Since the cells related to the queries were highly different, the

extremely dense regions could hinder the short-term warps in

the both VWs. These unbalanced queries in DSs, however,

were performed by the entire warps in round-robin, without

introducing further “idle” warps. Even impacted by the small

preempting cost, the both DSs was 5X more superior to VWs.

In addition, due to the inner-warp balancing considerations

of CCs, the both optimized CCs (CC+VW and CC+VW+DS)

were 10X better than their competitors on QDs.

VII. CONCLUSIONS

This paper presents an optimized framework that can ef-

ficiently schedule massive spatial queries on current GPUs.

The entire queries are first associated with a spatial grid to

reduce the actual join cost. We highlight a two-level scheduling

method to exploit good data locality by a novel scheduling

method, so that groups of threads can effectively compete the

unbalanced tasks. Experimental results, covering 100 millions

of skewed moving objects and queries, show that the proposed

strategies improve the spatial query throughput by one order

of magnitude as compared to the existing methods.
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