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Abstract—Memory resource is a critical bottleneck for large-
scale Deep Neural Network (DNN) applications. Hybrid Memory
System (HMS) provides a promising solution to increase memory
capacity in an affordable way. However, to release the powerful
performance of HMS, data migration plays an important role.
A typical DNN application has a couple of execution layers
,and each requires distinct data objects. Deploying DNN on
HMS imposes enormous challenges on data migration strategy
and inspires us to pursue smart solutions. To tackle the data
migration problem on HMS for DNN applications, we propose
a runtime system for HMS that automatically optimizes scalable
data migration and exploits domain knowledge on DNN to
decide data migrations between the fast and slow memories in
HMS. To achieve a better performance in data migrations for
DNN training, we introduce a reference distance and location
based data management strategy (ReDL) that treats short-lived
and long-lived data objects with Idle and Dynamic migration
methods, respectively. Using ReDL, DNN training on HMS with
a smaller fast memory size can achieve similar performance to the
fast memory-only system. The experimental results demonstrate
that with configured the size of fast memory to be 20% of
each workload’s peak memory consumption, our work achieves
a similar performance (at most 9.6% performance difference) to
the fast memory-only system. It further achieves an average of
19% and 11% improvement in data locality against the state-of-
the-art solutions.

Index Terms—Hybrid Memory System, Scalable Data Man-
agement Strategy, DNN Applications, Idle Migration, Dynamic
Migration

I. INTRODUCTION

Hybrid Memory System (HMS) is an emerging memory
architecture consisting of heterogeneous memory components,
e.g., DRAM, non-volatile memory (NVM). Different memory
components are equipped with various technical attributes;
for example, DRAM has a faster I/O speed but a smaller
capacity; NVM provides more memory space while it is
not as fast as DRAM; HMS brings a promising solution to

This work is supported by the National Science Foundation under Grant
CCF-1908843 and CNS-2008265.

improve memory capacity, increase I/O bandwidth, and avoid
some existing memory limitations. Given that HMS consists of
multiple types of memory components with different attributes
(e.g., capacity, bandwidth, speed and, latency), the memory
management strategy for HMS should take advantage of these
attributes discrepancies when conducting data placements and
migrations.

Deep Neural Network (DNN) has been dramatically suc-
cessful over the past decade across many academic and in-
dustrial domains, including recommendation systems [1], real-
time strategic game control [2], and computer vision [3]. In
order to speed up the training process of DNN, in-memory
computing is introduced. However, the demands for higher
model qualities come with more training data and larger model
sizes, which result in larger memory footprints. For example,
the state-of-the-art-models about language translation have
hundreds of billions of parameters [4], which requires hun-
dreds of GB of active memory to hold the training network.
The recommendation system developed by Facebook [5] con-
tains orders of magnitude more parameters than the traditional
neural networks, which means tremendous memory space is
demanded to guarantee the system’s normal running.

To host the large DNN models and ensure a smooth training
process, HMS profiles the memory access pattern of DNN
training, bridges the performance gaps caused by different
memory components and eliminates the adverse impact of data
migrations. However, memory management is more compli-
cated when we consider memory size and data scalability. In
HMS, the fast memory size tends to be much smaller than
the slow ones due to its high price. The average price of
DRAM DDR4 (a common fast memory) increases by 2.3x
from 2016 to 2020 [6], motivating researchers to find an
efficient memory management strategy for HMS. Moreover,
data migrations between the fast and slow memories can be
detrimental to the application performance due to the current
training process has to suspend until the requested data is
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moved into the fast memory. Ideally, the data that is frequently
accessed by DNN should be placed in the fast memory to
ensure wider bandwidth and lower latency. In contrast, other
less-used data is stored in the slow memory, which guarantees
a better training performance and decreases data migrations.

Our work focuses on scalable data objects management on
HMS for DNN training. We leverage the repeatability and
predictability of the DNN computing graph to optimize data
placement and migration between the fast and slow memory
components. To flexibly characterize the data access pattern of
each DNN, we use tensor as the basic unit for data profiling
and management. We also introduce a metric named liveness
to describe how many layers a tensor can survive based
on the profiling information on tensors. Accordingly, short-
lived and long-lived definitions are adopted to represent data
objects with longer and shorter liveness. To achieve a better
performance in data migrations for DNN training, we propose
a reference distance and location based data management
strategy (ReDL) that controls short-lived and long-lived data
objects with Idle and Dynamic migration methods, respec-
tively. ReDL uses scalable data migration periods to realize the
overlap between data migrations and training processes so that
the requested data is proactively hosted in the fast memory as
much as possible. It further increases the training performance
by introducing Direct Slow Memory Access (DSMA), which
breaks the barrier between computing units and slow memory
by allowing computing units to directly access data objects
in the slow memory. In general, conducting data placement
and migration across different memory components with less
performance loss is a critical optimization target for HMS,
especially to achieve similar performance to the fast memory-
only system.

In this paper, we propose a runtime system that automat-
ically optimizes data migrations and exploits domain knowl-
edge on deep learning to conduct data management on HMS.
The key contributions of our work are as follows:
• We empirically analyze the performance of DNN with

different memory hardware and indicate the performance
differences from hosting data objects in different memory.

• We propose a reference distance and location based data
management strategy (ReDL) that treats short-lived and
long-lived data objects with idle and Dynamic migration
methods, respectively. ReDL uses scalable data migration
periods to realize the overlap between data migration and
the training process to achieve better training performance
and memory utilization.

• We design a runtime system running on HMS with ReDL
that automatically bridges the performance gaps between
the fast and slow memories, avoids unnecessary data
migration, and allows computing units to directly access
data objects in the slow memory.

• We evaluate ReDL by with TensorFlow. The experimental
results demonstrate that with configured the size of fast
memory to be 20% of peak memory consumption of each
workload, ReDL achieves a similar performance (at most
9.6% difference) to the fast memory-only system. It also

achieves average of 19% and 11% improvements in data
locality against the state-of-the-art solutions.

The rest of this paper is organized as follows. Section II
gives background and motivations. Section III describes the
detailed system design and data migration strategy. Section IV
presents the experimental results. Section V reviews related
work. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Graph-Based DNN Training

DNN is often training with a backward propagation algo-
rithm and an optimizer such as stochastic gradient descent.
A typical DNN model usually contains a stack of layers,
which is comprised of a group of neurons. Each neuron in
a layer computes a non-linear function of neurons’ outputs
in the preceding layer, using a set of weights [7]. Training
DNN models often include many iterative steps, which involve
a batch of training data objects fed into DNN. Training
DNN with some popular deep learning frameworks such as
TensorFlow [8] implements DNN as a computation graph
composed of a set of nodes or vertex, which represent some
computational kernel. Each kernel has its attributes, such
as the number of inputs, number of outputs, computation
time, and computational complexity. Data dependencies and
control between kernels are denoted as directed edges in the
computation graph. Edges representing data dependencies are
assigned with a tensor that takes contiguous fixed memory
space size. Moreover, the computation graph is static and
repeated in the whole training process. These features make
profiling the memory access pattern of data objects possible
and then optimize data migration in terms of the static DNN
computation graph.

Fig. 1. A sample of DNN computation graph.

Figure 1 depicts a simple example of a computation graph
with 6 kernels and 5 tensors. Nodes in the graph represent
computing kernels and edges mean tensors consumed by ker-
nels. Nodes are denoted with zero or more inputs and outputs.
The inputs and outputs of each kernel are tensors. Each tensor
is displayed with its producing kernel, each consumer of the
tensor, and its last consumer. After the last consumer, a tensor’s
memory can be freed for other coming tensors. For example,
tensor t2 is produced by kernel k2 and consumed by kernels
k4, k6. Besides, k6 is computed after k4 in the computation
graph. The memory space occupied by t2 cannot be released
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until k6 finished its computation, which means k6 is actually
the last consumer of t2.

We focus on the scenario that the computation graph de-
scribes a static DNN training process. That is, the computation
graph has no data dependence control and the static graph
structure is known at compile time. Moreover, the sizes of all
intermediate data are obtained with the compile process. In this
scenario, we can predict and record each tensor’s memory ac-
cess behavior and proactively migrate it into the corresponding
memory component to achieve better performance.

B. Case Study

We characterize the memory access pattern in DNN and
use the analysis results to drive our work. We adopt Persistent
Memory Block Driver (PMBD) [9] to simulate the slow
memory. PMBD is a PCIe NVM device simulation based on
DRAM. 200ns delay for the read/write operation and 19GB/s
bandwidth are set up to simulate slow memory media. We
use the DRAM as the fast memory, which is configured with
34GB/s bandwidth and 90ns latency.

We use the ResNet50 V2 to study data objects (tensor)
and their access patterns. Only one training step is used
for profiling this information. ResNet50 V2 is fed with the
CIFAR-10 data set with 128 batch sizes and 64 layers in a
forward and backward pass. Besides, in this case study, we
only use the regular DRAM which means there is no fast
or slow memory included. We regard a data object as alive
after it is allocated and before it is freed. The liveness of a
data object is defined based on the number of layers the data
object is alive.
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Fig. 2. Distribution of liveness of data objects and their sizes from ResNet50
V2.

1) Memory Access Pattern: Figure 2 displays the distribu-
tion of data objects’ liveness and the ratio of data sizes. In this
case, the small data object is smaller than 4KB and the large
data object is no smaller than 4KB. The X-axis denotes how
many layers (liveness) a data object can survive in the model
training step; the last label ”>64” means that the data object
stays more than one forward and backward pass. Figure 2
shows that more than 90% of data objects’ liveness are no
longer than one layer and among those data objects, nearly
97% of them are small data objects. In this paper, we define
the data object whose liveness is no longer than one layer as
a short-lived data object and the data object can survive more

than one layer as a long-lived data. By hosting short-lived data
objects in the fast memory, we can decrease unnecessary data
migrations, increase memory utilization and improve DNN
training performance.

Figure 3 shows the distribution of memory access at the
layer distance level. The figure shows that a large number of
data objects are accessed in the first 24 layers. Among those
data objects, nearly 77% of them are accessed in Layer 9-
24. Those are the frequently used data objects that should
be placed in the fast memory. On the other hand, some data
objects are less accessed. For example, in the layer range
[57, 64], there is almost no data access occurred. The uneven
distribution of data objects and their unbalanced access pattern
in DNN provide opportunities for data management.
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Fig. 3. Distribution of memory access at the layer distance level.

2) Impact of Different Memory: We conduct a further case
study on the performance of ResNet50 V2 with 128 batch
size under different memory settings. PMBD [9] simulates a
slow memory while DRAM serves as the fast memory. Three
memory settings are configured: all slow memory, hybrid
memory and all fast memory. We set up 10GB in slow-only
and fast-only memory cases, 2GB fast memory and 8GB slow
memory in the hybrid case.

Figure 4(a) shows the training performance for three dif-
ferent memory settings: the slow-only memory, the fast-only
memory and the hybrid memory running with NUMA [10].
The Slow bar displays that simply replacing fast memory
with slow memory results in poor performance (about 3x
slowdown) for training DNN models. The Hybrid bar shows
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Fig. 4. (a) shows the iteration performance of ResNet50 V2 with a batch
size of 128. (b) plots normalized performance to all I/O committed in fast
memory.
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that some specific optimized data management for hybrid
memory is necessary, providing only a small improvement
over the Slow case. The Fast case brings the best performance
with almost 3x and 1.5x speedup compared with Slow and
Hybrid cases, respectively, but the cost is more expensive
than the first two settings. Thus, a hybrid memory system
equipped with a smart data management strategy could reduce
the performance gap between slow and fast memory.

The read/write speed of memory has implications on the
performance of kernels with inputs and outputs in slow or
fast memory hardware. We analyze the performance impact
on a single CONV kernel from ResNet50 V2. Figure 4(b)
demonstrates the execution time of this kernel with input
(upper label) and output (lower label) saved into Slow and
Fast memory hardware. We observe that when the input to
the CONV kernel is saved in Slow memory and output is in
Fast memory, its performance is very similar to the case when
both input and output are in Fast memory. However, in the
case when the output is saved in Slow memory, the kernel’s
performance decreased dramatically with over 2x slower. This
behavior inspires us to consider the I/O latency differences
when deciding where to place a data object to get an optimal
runtime with a fast memory size constraint.

Summary: The above study has demonstrated the uneven
distribution of short-lived and long-lived data objects and the
unbalance access pattern across DNN training layers. Be-
sides, the read/write speed asymmetry from the fast and slow
memory results in large implications on kernel’s performance,
especially when a kernel places its outputs in the slow memory.
Given that the DNN computation graph is static and its
memory access pattern is stable, we can profile each tensor’s
data behavior to build a scalable memory management strategy
for HMS, which is smart in controlling data placements and
migrations. In the ideal case, short-lived data objects are to
be placed in the fast memory while long-lived ones are in
the slow memory. Specifically, the input data location should
be considered because it has a huge effect on DNN training
performance.

III. SYSTEM DESIGN

A. Architecture Overview

In this section, we present a runtime system that implements
ReDL, a thin middleware layer between applications and
backend deep learning frameworks.

An overview of the proposed architecture is shown in Fig-
ure 5. The key contribution relies on a novel reference distance
and location based data management strategy (ReDL) on a
hybrid memory system for DNN applications. ReDL can place
data objects (tensors) into fast or slow memory and migrating
data objects among them based on the liveness of data objects.
More details on the data management strategy would be
discussed below. As Figure 5 shows, our proposed architecture
mainly consists of three components: Kernel Controller, Data
Objective Controller, and Memory Controller.

Fig. 5. Architecture Overview.

Kernel Controller has two functional modules. The Ker-
nel Profiling collects memory access information of each
kernel, records the related data objects (tensors), calculates
the kernel’s execution time in each layer, and decides the
liveness of the kernel. The profiling process only uses one
training step to collect the information and then update the
profile information in Profile Cache. The Profile Cache is
a software cache reserved to record profiled kernels. Since
profiling of some DNN models may be time-consuming and
DNNs typically contain many identical kernels, Profile Cache
is necessary. Besides, by reserving a profile cache, the profiling
process for any given DNN model only needs to be performed
once.

Data Objective Controller is driven by the profiling infor-
mation and implements the ReDL method we proposed. Short-
lived and long-lived data objects are processed by Idle Mi-
gration and Dynamic Migration, respectively. Short-lived data
objects are placed in contiguous memory space in fast memory
by Idle Migration, and some of them will be freed when
the space is in a tension status. This method decreases some
unnecessary data movement caused by the short liveness of
data objects. We adopt a Dynamic migration strategy for long-
lived data objects, which conducts data migration between fast
and slow memories periodically. In a migration period, the
Dynamic Migration module migrates data objects demanded
for the next period based on the static DNN computation
graph. To handle the case that requested data objects are not
timely migrated in the fast memory, we propose Direct Slow
Memory Access (DSMA), which breaks the barrier between
computing units and slow memory by allowing computing
units to directly access data objects in the slow memory.

Memory Controller consists of two modules. The Fast
Memory manages data placed in fast memory while the Slow
Memory maintains data objects in slow memory space. Be-
sides, Fast Memory and Slow Memory communicate with each
other to finish data migration between them. Data Objective
Controller sends out all the data management information with
a periodical heartbeat connection protocol. ReDL controls data

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:16:28 UTC from IEEE Xplore.  Restrictions apply. 



1474

migrations among fast and slow memories that overlap DNN
application execution, such that the application performance
is not affected.

B. Kernel Profiling

Kernel Profiling inspects the DNN computation graph in its
compiling stage to extract the order and types of kernels in
the graph, the producer(s) and consumer(s) of each kernel, and
the data objects (tensors) it involves. It collects the profiling
information of the kernel and tensor, such as its liveness,
accessing time, and execution time by varying its inputs and
outputs in fast and slow memories. Since the selection of input
and output tensor location is tentative, it might take a couple of
training steps to decide the best execution time for each kernel.
We use the Profiling Cache to record the profiled kernels so
that the profiling step for any given DNN graphs only needs
to be performed once.

We need to minimize the execution time of the DNN
computation graph with limited memory size. In the static
DNN computation graph, computation kernels are executed
sequentially. Therefore, there is not data object movement
during the training step. We formulate the objective function
as:

min
∑
k∈κ,t∈τ ρk,t

s.t.


∑
t∈τ f(t,k) +

∑
t∈τ s(t,k) ≥ τ (1)∑

t∈τ f(t,k) ≤ FS (2)∑
t∈τ s(t,k) ≤ SS (3)

where k is a kernel in the set of all kernels of a computation
graph and ρk is the expected execution of kernel k. τ is the
set of all tensors for a kernel k and t is a tensor in τ . Note
that ρk highly depends on the locations of input and output
tensors for kernel k. The selection of the related input and
output is important due to the dependencies among kernels.
As shown in Figure 4(b), the optimal case is that the inputs
are placed in the slow memory and outputs in the fast memory.
The main constraints are on the amount of memory used
by the computation graph. Constraint (1) denotes the total
memory usage in the fast and slow memory is no smaller than
the total size of tensors for a kernel. Constraints (2) and (3)
represent the memory space used in the fast and slow memory,
respectively.

To solve the objective function, we use the linear and integer
programming theory [11], which uses the profiling information
to automatically optimize the placed locations of data objects
with memory size as the constraints.

C. Idle Migration

Idle Migration manages short-lived data objects in the fast
memory aiming to guarantee a smooth training process by
decreasing unnecessary suspense for data fetching. During the
DNN model training steps, the short-lived data objects are
not accessed too frequently compared with the long-lived data
objects. However, Figure 2 shows a large number of short-
lived data objects throughout the whole DNN training process,

which indeed has a non-negligible impact on the training
performance. Furthermore, the size of a short-lived data object
is small, huge page in and out operations will be caused if
these short-lived data are saved in the slow memory.

1) Managing Data Objects: A continuous space is allo-
cated in the fast memory to host short-lived data objects. This
space is reserved for short-lived and some newly migrated
long-lived data objects. Short-lived data objects in the fast
memory are not considered for migration when a memory
tension occurs because their quantity is large. The migration
of short-lived data in other memory can take a lot of time
and is detrimental to the training process. However, long-
lived data objects are supposed to be migrated to the slow
memory if there is no enough space in the fast memory
because these data objects have a higher probability of being
accessed again throughout the training steps. The continuous
fast memory space is allocated at the beginning of each
migration period to accommodate data objects for the current
training iteration. With this operation, ReDL guarantees that
there is always enough space for short-live data objects. The
access information of data objects is also collected during the
migration period to achieve efficient memory utilization and
better application performance.

When a new short-lived data object is required, ReDL first
checks the free size of the fast memory. If there is enough
size to hold the data objects, it is directly placed. If not, some
short-lived data objects are selected as the victims to be freed,
and then the migration of new data objects is processed. The
selection of victims is based on the liveness. Short-lived data
objects with shorter liveness are chosen. By doing this, the
side-effects on application performance are lightened. At the
end of the current migration period, ReDL updates the metric
information such as liveness, accessing times for data objects
and free space size, memory utilization, and data locality for
the fast memory used in the next migration period.

2) Data Movement Implementation: Algorithm 1 depicts
the main procedure of Idle Migration, mainly including Alloc-
FastMem, ParseProf, FastDOCtrl, and UpdateInfo functions.
(1) The fast memory is allocated at the beginning of each
data migration period. Function AllocFastMem (Line 1-5)
finishes smoothly applying for a continuous space from the
fast memory if the available space satisfies the requested
memory size and updates the size of free fast memory. (2)
Then ParseProf function parses the profiles of data objects
generated by profiling modules. In this step, the basic ac-
cessing information of each data object (tensor) is abstracted,
such as liveness, execution time, input (producer), and output
(consumer). According to the parsed information, the short-
lived data objects are preferentially placed in the just allocated
fast memory space. ParseProf also handles the migrations
of the long-lived data objects from the slow memory. (3)
When a new data object request arrives and is not in the
fast memory, data migration is triggered. FastDOCtrl first
checks whether the fast memory space is empty or there is
enough space for the new data object. If the checking result
is true, this data object is directly placed in fast memory.
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Algorithm 1 Idle Migration
Input: profiling info, fast mem size, migration seq
Output: data info, mem info

1: function ALLOCFASTMEM(fast mem size)
2: if free size > fast mem size
3: mem pts = fastMalloc(fast mem size)
4: free size = free size - fast mem size
5: return mem pts
6: end function
7: function PARSEPROF(profiling info)
8: data info = parseInfo(profiling info)
9: return data info

10: end function
11: function FASTDOCTRL(mem pts, data info)
12: //New Data Paged in
13: if mem pts is empty or enough space
14: mem pts = placeData(data info)
15: else freeVictimData()
16: return mem pts, data info
17: end function
18: function UPDATEINFO(profiling info)
19: profiling info = updateInfo(mem pts,data info)
20: return profiling info
21: end function

Otherwise, FastDOCtrl traverses all the live data objects in
the fast memory to find victims that are supposed to be freed.
Victims are the data objects with much shorter liveness and
on longer accessed in the current migration period. (4) The
UpdateInfo function updates the metric information of the
fast memory size and data objects. And this information helps
make data management decisions in the next migration period.

The idle migration policy above tackles the issue of migrat-
ing short-lived data objects to the slow memory even if they
are no longer accessed. Idle Migration decreases unnecessary
data migrations, which result in performance loss and waste
memory bandwidth. It is a huge waste of the fast memory
space if short-lived data objects stay longer time in this
memory. Furthermore, deciding the migrations of short-lived
data objects is time-consuming but cannot always guarantee
accuracy since collecting memory accessing information takes
time, and counting the number of memory access information
for data objects can be inaccurate. Idle Migration overcomes
the limitations with the DNN domain knowledge and all the
essential information for making migrations has been obtained
in the profiling process.

D. Dynamic Migration

Dynamic Migration controls migrations of long-lived data
objects in the slow memory. It uses the scalable migration
period to decide the amount of long-lived data objects placed
in the slow memory and the frequency of data movements
between fast and slow memories. Besides, Dynamic Migration
supports directly accessing the slow memory in the case that
requested data is not timely migrated in the fast memory.

The critical operation in Dynamic Migration is determining
an optimal migration period size that brings the best DNN
training performance. In ReDL, a training step is divided into
equal-sized migration periods to guarantee flexible control on
long-lived data objects migrations. We use the layers in the
static DNN computation graph as the metrology to define the
migration period. The layer-based migration period usually
ensures the completion of kernel operation at the end of each
period because no operations are running across layers. The
static DNN graph structure is fixed at the compiling step,
which provides the probability of finding the optimal layer-
based migration period. Besides, each layer is associated with
a computation phase that implies a memory access pattern.
The layer-based migration period leverages the memory access
pattern collected in the profiling phase to lead data migrations.

Fig. 6. Layer-based data migration period.

1) Determining Migration Periods: Figure 6 depicts a gen-
eral example of a layer-based data migration period. In this
example, two randomly consecutive migration periods, t1, t2,
are displayed. Data objects migration for period t2 is triggered
at the beginning of the t1, aiming to migrate most requested
shored-lived data objects to the fast memory and long-lived
ones in the slow memory before the second period starts.
This operation occurs during the whole period so that data
migration overlaps with DNN training and the overhead of data
migration is further neutralized. Given the fact that the size of
fast memory space is limited, memory tension is inevitable,
which is shown as ”Trigger migrations when memory tension
occurs” in Figure 6. When this case happens, some unused
short-lived data objects are first freed, and then the long-lived
ones that are not accessed in the current period are migrated
back to the slow memory. Such a strategy is applied to save
the fast memory space as much as possible. At the end of
migration period t1, another data object migration is triggered
for the period after t2. A similar operation is conducted until
the training phase is finished.

Determining an optimal migration period is a dilemma.
If the migration period is too large, the amount of data
objects to migrate can be larger than the available memory
space, especially for the fast memory. If the migration is
small, then the possible execution time to overlap with DNN
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training is shorten. So the migration period cannot be too
short; otherwise, the data objects to migrate cannot be timely
migrated to the right memory space before the next migration
period begins. A trade-off is to make between large and small
migration periods.

To tackle this problem, we formulate the objective function
as follows:

min
∑
l∈γ Ll(I)

where γ is the set of all layers l in the DNN computation
graph, Ll is the expected execution time for layer l, and I
is the optimal migration period for the DNN. We wish to
minimize the execution time of the whole computation graph
with limited memory space. Note that Ll depends on the
memory size and data objects migration period.

For Ll, we can express it as:

Ll(I) = pl(I) +ml(I) (1)

where pl(I) is the computation time and ml(I) is data objects
migration time. To find the optimal migration period I, we
find that pl(I) and ml(I) have positive correlations with the
migration period I. The large the migration period is, the
longer time takes by pl(I) and ml(I). Equation (1) is subject
to the following constraints:

s.t.

{
pl(I) 6 S − F (I) (4)

ml(I) > pl(I)/BW (5)

where S is the total fast memory size, F is the fast memory
space taken by the short-lived data objects, and BW is the
migration speed determined by bandwidth between the fast
and slow memories. F is a function of the migration period
I. Different migration periods have different Fs. According
to the profiling results, F is relatively stable. S is a constant,
so S − F (I) is close to constant. pl(I) and ml(I) are also
monotonically increasing functions of I. Hence, constraints (4)
and (5) build the upper and lower bounds to the migration
periods.

Although Equation (1) and its constraints reveal the inherent
trade-off between large and small migration periods, it still
needs a dedicated algorithm to find the optimal migration
period. In ReDL, we adopt an iterated greedy algorithm [12]
[13] to determine the optimal period at runtime. When the
profiling step is finished, we start with the migration period
of the median of the total layers and then test if this period
satisfies the constraints. If the test result is positive, the optimal
migration period is determined. Otherwise, we will first repeat
this process with a new migration period by adding 1 layer to
the current period size. And then test the case by deducting
1 layer from the median number of total layers. During this
optimizing round, three training iterations are included. In
the next round, the algorithm tests the migration periods by
adding or deducting 2 to the median number. A similar round
is repeated until the optimal migration period is found. We
measure the performance from different migration periods and
use the best one in the remaining training steps. We must
ensure that data placement in any optimizing round is the same

in order to obtain accurate comparison results. The same data
placement is easily guaranteed due to the repetitive execution
pattern in DNN model training. It might take a couple of
rounds to determine the optimal migration period and result
in some performance loss, but the total overhead is not large
because this case does not often happen and performance loss
is compensated in the remaining training steps.

Fig. 7. Direct Slow Memory Access (DSMA).

2) Direct Slow Memory Access: Another case to consider
is the optimal migration period fails to fit some of the
computation phases because there is no enough time for
migrating requested data objects from the slow memory to the
fast memory before the upcoming period starts. To tackle this
problem, we propose Direct Slow Memory Access (DSMA),
which breaks the barrier between computing units and slow
memory by allowing computing units to directly access data
objects in the slow memory. Figure 7 shows a simple dataflow
of DSMA. In the regular dataflow, data objects in the fast
memory are directly accessed by computing units such as
CPU, GPU, and FPGA to execute DNN model training. Data
objects saved in the slow memory are first migrated in the
fast memory and then computing units can use them. With
DSMA, computing units can directly access data objects in
the slow memory without first migration in the fast memory.
Application performance from DSMA cannot compete with
the regular access mode, but DSMA does not occur frequently
and its adverse impacts are negligible.

Algorithm 2 depicts the main modules of Dynamic Migra-
tion. The functionalities AllocSlowMem, ParseProf (Line 1-
10) and UpdateInfo (Line 26-29) are similar to Idle Migration.
SlowDOCtrl manages the long-lived data objects. The newly
coming long-lived data object is placed in the slow memory
(Line 16-20). The migration to the fast memory happens
only when it is during a valid migration period and there
is enough free space in the fast memory. We implement our
proposed iterated greedy algorithm in FindOptPerid (Line 11-
14), aiming to find the optimal migration period. As discussed
in the above context, determining the optimal migration period
might take a couple of rounds and cause some performance
loss. We implement Direct Slow Memory Access (DSMA) in
accessSlowMem function (Line 14) in SlowDOCtrl to handle
the case that data migration to the fast memory cannot be
finished due to the migration period does not fit to some layers.
With DSMA, the training step still continues by accessing
long-lived data objects in the slow memory and does not
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Algorithm 2 Dynamic Migration
Input: profiling info, fast mem size, migration seq
Output: data info, mem info

1: function ALLOCSLOWMEM(fast mem size)
2: if free size > fast mem size
3: mem pts = fastMalloc(fast mem size)
4: free size = free size - fast mem size
5: return mem pts
6: end function
7: function PARSEPROF(profiling info)
8: data info = parseInfo(profiling info)
9: return data info

10: end function
11: function FINDOPTPERID(data info)
12: opt period = findPerid(data info)
13: return opt period
14: end function
15: function SLOWDOCTRL(opt period, mem pts,

data info)
16: if mem pts is empty or enough space
17: mem pts = placeData(data info)
18: else freeVictimData()
19: return mem pts, data info
20: //Data Migrated to fast memory
21: if opt period is valid
22: mem pts = migrateData(data info)
23: else accessSlowMem(mem pts)
24: end function
25: function UPDATEINFO(profiling info)
26: profiling info = updateInfo(mem pts,data info)
27: return profiling info
28: end function

need to wait for the completion of data migration. Overall,
Algorithm 2 does not bring a large overhead because these
special cases do not happen often. Hence a large number
of training steps or testing rounds to determine the optimal
migration period is not too needed.

In ReDL, since the long-lived data objects are placed in the
slow memory and their total size is usually much larger than
the short-lived ones, the size of this memory is allocated tens
of GB to host data objects for the whole DNN model training.

IV. EVALUATION

A. Experiment Setup

We study the performance of ReDL on a single machine,
which has Intel Xeon(R) CPU E5-2630v4@2.20GHz x 20 and
64GB DDR4 RAM. Table I shows the testbed environment we
use. Persistent Memory Block Driver (PMBD) [9] simulates a
slow memory while DRAM serves as the fast memory so that
a hybrid memory system is built. We compare the performance
of ReDL with NUMA [10] and OS-Integrated Multi-level
memory management system(OIM) [14]. In NUMA [10],

TABLE I
OVERVIEW OF EXPERIMENTAL ENVIRONMENT

CPU Intel Xeon(R) CPU E5-2630v4
DRAM 64 GB DDR4
Fast Memory Bandwidth: 34 GB/s Latency: 90ns
Slow Memory Bandwidth: 19 GB/s Latency: 200ns

TABLE II
SUMMARY OF SELECTIVE BENCHMARKS.

Benchmark Dataset Batch size Model size
ResNet50 V2 CIFAR-10 128 98 MB

LSTM PTB 20 106 MB
VGG 19 CIFAR-10 64 549 MB

Inception V3 MNIST 64 92 MB

when new memory space is allocated, it will occur in the
fast memory if free space is available; otherwise, it will
only occur in the slower memory node. OIM [14] improves
page migration performance by launching four threads for
paralleling page copy and eight threads for concurrent page
migration, and it also optimizes page locations every five
seconds. Unless specified otherwise, all the experiments are
conducted on a pure CPU platform and the size of fast memory
is configured to be 20% of the peak memory consumption
of each DNN model. We will leave the CPU and GPU
computation in future work.

We select four popular DNN workloads to benchmark our
work, ReDL is also working on other frameworks.. A summary
of the benchmarks is described in Table II. TensorFlow [8] is
used to implement ReDL and test its performance with these
four workloads: ResNet50 V2 [15], LSTM [16], VGG 19 [14],
and Inception V3 [17]. Each workload is run until its execution
time in a migration period is stable. Since these workloads
have no data dependent relations, performance will be constant
after the first couple of computation iterations. For Tensorflow,
we set its inter-op parallelism and intra-op parallelism to be 20,
which is the number of physical cores in our testbed, so that
all the experiments are conducted on the CPU with one thread
per physical core. The performances of our work are mainly
evaluated in (i) training throughput, (ii) training speedup, (iii)
data locality, and (iv) overhead and scalability.

B. Training Throughput

Figure 8 depicts the performance of DNN model training
throughputs. We compare ReDL with the following cases:
FastMem (fast memory only system), OIM, NUMA and
SlowMem (slow memory only system). The size of fast
memory is configured to be 20% of each workload’s peak
memory consumption. The figures show that the performance
difference between ReDL and all the fast memory cases is very
small. The maximum difference is 9.6% from ResNet50 V2
while the minimum is 3.9% from VGG 19. Overall, ReDL has
an average 6.9% performance improvement. ReDL averagely
outperforms OIM with 8.4% (up to 11% in Inception V3)
and is better than NUMA by 20% on average (up to 34%
in ResNet50 V2). The improvements are bought with the
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Fig. 8. Training throughputs from FastMem, ReDL, OIM, NUMA and
SlowMem
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Fig. 9. Training speedup normalized to NUMA under different ratios between
fast and slow memory.

fact that ReDL optimizes data migrations between fast and
slow memory in tensors and conducts migrations only within
migration periods. ReDL also has an average 20% increase
compared with NUMA.

C. Training Speedup

Figure 9 shows the speedup achieved by ReDL normalized
to training with NUMA. The x-axis denotes the ratio of slow
to fast memory used to train the four workloads. In this
experiment, we apply 40GB from the system memory and
use PMBD [9] to simulate it as the fast and slow memories
following different ratios above. We notice that NUMA’s
performance is poor compared with OIM and ReDL in all
ratios: 8:1, 4:1, and 1:1. With more memory space is allocated
as fast memory, performance improvements by NUMA are not
so dramatic. This is because NUMA first allocates data objects
in the fast memory without considering the computation
sequence until the fast memory is full. Besides, in NUMA,
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Fig. 10. Data localities from NUMA, OIM and ReDL.

the long-live data objects are placed in the fast memory
resulting in more data migrations. OIM tackles this issue via
whole page migration and parallel migration strategy, but its
performance improvement is not as good as ReDL. ReDL
has better performance under any memory ratios because it
is aware of the liveness of data objects and based on them
to optimize data migration between fast and slow memory.
In Figure 9, VGG 19 is an outlier due to its extremely large
second convolution layer, which demands more memory space
to host its related data objects. When the fast memory is
small (i.e., in the cases with ratios 8:1 and 4:1), some of the
data objects must be placed in the slow memory, incurring
a performance loss. When there is enough fast memory, we
note a huge performance improvement, as it is illustrated in
the figure, the performance jumps high from the 4:1 ratio to
the 1:1 ratio.

D. Data Locality

Figure 10 illustrates the data localities from NUMA, OIM
and ReDL. In this experiment, we define data locality as
the percentage of requested data objects in the fast memory.
Higher data locality implies fewer data migrations and, in
turn, reflects the efficiency of the data management strategy.
In Figure 10, we monitor the workloads’ activities until their
performance is stable, which is reflected by a relatively smooth
line. We can observe that the stable time for each workload
differs due to the differences in their computation graphs.
Furthermore, a couple of peaks and valleys in each line,
which displays locality fluctuations. The valleys between any
two consecutive peaks illustrate data migration. Note that our
proposed work, ReDL is always above NUMA and OIM with
an average of 19% and 11% improvements, respectively. ReDL
also delays the occurrence times and frequency of valleys
because it can timely migrate data objects in the fast memory.
There is an outlier in the experimental results of VGG with
NUMA; a spike occurs around the time points 20. We can
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Fig. 11. Memory Overhead and Scalability of ReDL.

explain this exception with its special large convolution layer,
which demands more memory while the memory management
policy in NUMA is not so efficient.

E. Overhead and Scalability

To analyze the overhead of ReDL, we use NUMA as the
baseline and conduct experiments to measure peak memory
consumption in NUMA, OIM and ReDL, which scales how
much memory resource it takes to conduct DNN model
training. Figure 11(a) shows ReDL consumes 6% and 3%
more memory compared with NUMA, OIM due to ReDL
needs some extra memory to conduct profiling and optimizing
steps. Inception V3’s peak memory consumption is relatively
stable in all platforms. Because the model size of Inception is
small and its computation graph is simple so that the memory
demand is not large. The overall average memory overhead
introduced is about 5% (about 3GB), which is negligible to
the whole system-level memory (64GB in our testbed).

Figure 11(b) shows the peak fast memory consumption
and the fast memory size for different ResNets. We use
four different ResNets with different computation layers to
illustrate ReDL’s scalability. Figure 11(b) shows that with
more layers added to ResNet, its peak memory consumption
increases from 5.8G (ResNet 32) to 36GB (ResNet 152) and
the fast memory size increases from 1.1GB to 7.35GB. In
total, when increasing ResNet’s layer from 32 to 152, the fast
memory size rises slower than the peak memory. This behavior
demonstrates the scalability in saving fast memory size and
memory management effectiveness by using ReDL.

V. RELATED WORKS

Many new memory technologies have been proposed to
build Hybrid Memory System (HMS), such as high-bandwidth
memory [18], non-volatile memory [19]. Facebook adopts
SSDs to reduce the memory footprint of databases [5]. Sim-
ilarly, Bandana proposes an SSD based persistence memory
system to hold DL training models with system memory
serving as a small cache [20]. Recent works [21] [6] study
data management on HMS with hardware-based methods.
In [21], the authors propose a novel Hardware/Software Co-
operative Caching (HSCC) mechanism that organizes NVM
and DRAM in a flat address space while logically supporting
a cache/memory hierarchy, which simplifies the hardware

design and offers several optimization opportunities for cache
management in software layers. [6] proposes an FPGA-based
hybrid memory system emulation platform by leveraging the
onboard hard IP ARM processors to improve simulation
performance while enhancing the results’ accuracy. The main
goal of these works is to guarantee high memory performance
with fast memory. ReDL is orthogonal to these systems and
complemental to them with supporting HMS and achieving a
better memory service rate.

Recently, many studies explore page placement policies
in hybrid memory systems. Thermostat [22] proposes an
application-transparent huge-page-aware mechanism to place
pages in a dual-technology hybrid memory system. It uses
an online page classification mechanism to classify both
4KB and 2MB pages as hot or cold while incurring no
observable performance overhead across several representative
cloud applications. FileMR [23] modifies the RDMA driver
of the CPU to expose files in its local storage to external
RDMA applications. Their main idea is that a remote user
can access one of the local files without interrupting the
local processor by using a special RDMA NIC with file
access capabilities. However, FileMR needs to modify the
RDMA standard by adding new functions, which results in less
flexibility in implementation. OIM [14] guides page placement
based on an existing Linux page replacement mechanism. It
improves page migration performance by launching multi-
threaded migration for single pages and concurrent migration
for multiple pages. However, using this design to decide page
migration for common short-lived data objects in DNN can
be slow and lacks a global view. Autotm [24] profiles the
execution time of kernels by placing input and output tensors
in different combinations of fast (DRAM) and slow (NVRAM)
memory media and manages data placement and movement to
minimize execution time with the limited fast (DRAM) size.
ReDL complements these works and mainly focuses on data
object migrations which use tensor as the basic unit.

VI. CONCLUSION

In this paper, we propose a runtime system that automat-
ically optimizes scalable data migration and exploits domain
knowledge on DNN to decide data migrations between the fast
and slow memories in HMS. To achieve a better performance
in data migrations for DNN training, we introduce a reference
distance and location based data management strategy (ReDL)
that treats short-lived and long-lived data objects with Idle and
Dynamic migration methods, respectively. Using ReDL, DNN
training on HMS with a smaller fast memory size can achieve
similar performance to the fast memory-only system. Our
experimental results demonstrate that with configured the size
of fast memory to be 20% of each workload’s peak memory
consumption, ReDL achieves a similar performance (at most
9.6% performance difference) to the fast memory-only system.
It further achieves an average of 19% and 11% improvement
in data locality against the state-of-the-art solutions.
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