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Abstract—Performance improvement and energy efficiency are
two important goals in provisioning Internet services in data
center servers. In this paper, we propose and develop a self-tuning
request batching mechanism to simultaneously achieve the two
correlated goals. The batching mechanism increases the cache hit
rate at the front-tier Web server, which provides the opportunity
to improve application’s performance and energy efficiency of the
server system. The core of the batching mechanism is a novel
and practical two-layer control system that adaptively adjusts
the batching interval and frequency states of CPUs according
to the service level agreement and the workload characteristics.
The batching control adopts a self-tuning fuzzy model predictive
control approach for application performance improvement. The
power control dynamically adjusts the frequency of CPUs with
DVFS in response to workload fluctuations for energy efficiency.
A coordinator between the two control loops achieves the desired
performance and energy efficiency. We implement the mechanism
in a testbed and experimental results demonstrate that the new
approach significantly improves the application’s performance in
terms of the system throughput and average response time. The
results also illustrate it can reduce the energy consumption of
the server system by 13% at the same time.

I. INTRODUCTION

There are two main goals for operating a modern data

center: performance guarantee of applications with respect to

the service level agreement (SLA) for increasing revenue, and

energy efficiency of the server system for reducing the oper-

ating cost. A well-known approach to controlling energy con-

sumption is to transition a processor from high-power states

to low-power states using Dynamic Voltage and Frequency

Scaling (DVFS) technique [23]. However, the transition of

CPU power states from high to low for energy saving will

increase the response time of applications. Therefore, it is

important but challenging to reduce both energy consumption

and SLA violations at the same time.

In this paper, we propose and develop a self-tuning request

batching mechanism: a middleware approach for performance

improvement of Internet applications and energy efficiency in a

virtualized server system. Today, popular Internet applications

employ a multi-tier architecture with each tier depending on its

successor and providing functionality to its preceding tier [8],

[24]. Front-tier Web servers process requests in the order of

arrivals. Indeed, most of those web requests are independent

to each other. Batching requests in a content-aware manner

can improve the cache hit rate of Web servers, which in

return provides the opportunity to improve the performance

of multi-tier applications and energy efficiency of underlying

server system at the same time. With batching, we employ

DVFS power management technique to minimize the energy

consumption while meeting the SLA on application average

response time.

However, there are two major challenges in developing the

batching approach. Firstly, it is a very hard problem to deter-

mine the batching interval length. Intuitively, a longer batching

interval can accumulate more requests for the same content for

batching and reordering. It can increase the cache hit rate and

reduce the application response time. But the batching will

also delay the processing of those requests, resulting in longer

application response time. The risk is the violation of the SLA.

The batching approach must be self-tuning in choosing the

batching interval length. Unfortunately, due to the complexities

of multi-tier Internet service architecture, high dynamics in

workloads and the virtualized server infrastructure, obtaining

an accurate model among batching interval, performance and

power consumption is a very hard problem.

Second, modern processors have a number of CPU fre-

quency states that are tunable by DVFS. How to synchronize

DVFS states with dynamically changing batching intervals will

have significant impact on the power control effect and system

stability. On one hand, the change in system behaviors due

to DVFS-enabled control actions has significant impact on

the accuracy of batching control. On the other hand, DVFS-

enabled power control decisions are dependent on the system

parameters that are affected by batching control.

We design a novel yet practical two-layer control system

that is composed of a batching control loop and a power con-

trol loop. The batching control is based on a self-tuning fuzzy

model predictive control (FMPC). FMPC effectively captures

a nonlinear relationship between application performance and

batching interval length through fuzzy modeling and predictive

control. The power control is designed with expert fuzzy

control (EFC) to modify the frequency of CPUs. EFC takes

advantage of model-independent fuzzy control techniques to

address the issue of lacking an accurate performance-power

model due to high workload dynamics. It is a real-time online

decision maker based on system conditions and historical

experiences. According to the fluctuations of the workload and

the usage of CPUs, EFC decides when and which frequency

state should be set for CPUs. Furthermore, we design a

coordinator between the two-layer controls to achieve the
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desired performance and energy consumption.

We built a testbed of multi-tier server system based on Xen

3.1 virtualization software. The server is running CentOS 5.8

with Linux kernel 2.6.18. The processor supports three fre-

quency levels: 2 GHz, 2.33 GHz, 2.83 GHz. We implemented

the batching approach and evaluated it with the RUBiS bench-

mark application. Experimental results demonstrate that the

new approach can improve the application’s system throughput

by 13%, average response time by 18%, and reduce the energy

consumption of the server by 13%.

The main contributions of our work are:

• We propose to use request batching with DVFS under

heavy and dynamic workloads for simultaneously im-

proving energy efficiency and application performance of

the server system.

• We design and develop a novel yet practical two-layer

control system that is composed of a batching interval

control loop and a power control loop. The control system

is self-tuning, with a coordinator between the two-layer

controls for joint performance and power control.

• We have built a testbed and evaluated the new approach

with the RUBiS benchmark application. Experimental re-

sults demonstrate that the developed batching mechanism

can effectively improve both application performance and

energy efficiency.

In the following, Section II discusses related work. Sec-

tion III gives the batching control system architecture and the

batching strategy. Section IV presents the modeling, design,

and analysis of the batching interval control. Section V gives

the power control design. Section VI presents the integration

of batching and power controls. Section VII gives the testbed

implementation. Section VIII presents the experimental results

and analysis. Section IX concludes the paper.

II. RELATED WORK

Power management in computing systems is an important

research area [5], [16], [17], [20], [27]. A few early studies

proposed to reduce power consumption in Web servers by

applying the DVFS technique [3], [21]. DVFS was applied

for maximizing the performance of power constrained high-

density servers [16] and improving power efficiency of server

farms [4]. Those studies focused on single-tier Web systems.

Horvath et al. [10] implemented a coordinated DVFS policy

for a three-tier Web system based on distributed feedback

control and an optimization model that minimizes total power

consumption while meeting end-to-end delay deadline. Wang

et al. [26] proposed a MIMO controller to accurately regulate

the total power consumption of an enclosure by conducting

processor frequency scaling for each server while optimizing

multi-tier application performance.

There are recent studies on coordinated power and perfor-

mance management in virtualized servers [1], [6], [9], [11],

[14], [12], [15], [19], [28]. Mistral [11] is a control architecture

for optimizing power consumption, performance benefit, and

the transient costs in Cloud environments. vPnP [6] coor-

dinates power and performance in virtualized data centers

Fig. 1. The System Architecture.

using utility function optimization. It provides the flexibility

to choose various tradeoffs between power and performance.

PERFUME [14] is a control system that can meet performance

guarantee of multi-tier Internet applications with the power

consumption cap of virtualized server. Those studies did not

consider using request batching for achieving performance

improvement of applications and energy efficiency of servers

at the same time.

An early study [3] proposed a request batching policy that

groups requests during light workloads and executes them in

batches, placing the server processor in a low-energy state be-

tween batches. In a recent study [27], Wang et al. developed a

concrete mechanism, virtual batching, which batches requests

to a Web server during very light workload scenarios so that

the server system can switch between DVFS and the sleep

state for energy saving. There are several important issues

that need further study. First, the virtual batching approach

ignores the SLA on the application average response time.

At very light workload scenarios, the batching interval needs

to be long enough to accumulate sufficient requests for the

CPU state switch that, however, may break the SLA with

the application. Second, the batching approach only works in

the light workload scenarios. It ignores the request content

and thus it does not take advantage of increasing the cache

hit rate of Web servers. Third, there is also a practicability

problem as there are only few processors that support sleep

state modification [5].

In this paper, we tackle the realistic yet challenging problem,

that is in heavy and dynamic workload scenarios how to

achieve energy efficiency of the servers and to meet the SLA

with the applications at the same time.

III. SYSTEM ARCHITECTURE AND BATCHING STRATEGY

A. System Architecture

Figure 1 illustrates the architecture of the batching control

system. It is composed of a batching control loop and a power

control loop on a virtualized multi-tier server system. The key

components in the batching control loop include a fuzzy model

predictive control (FMPC), a batcher, a SLA monitor, and a

cache hit rate monitor. The control loop relies on FMPC that

captures the nonlinear relationship between the application

performance and the batching interval length. It outputs the

batching interval length based on a dynamic fuzzy model. An
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Fig. 2. The batching interval length.

online self-tuning module is used to update the fuzzy model

according to various workloads and CPU frequency changes.

The power control loop is composed of an expert fuzzy

control (EFC) and a DVFS actuator. EFC takes advantage

of a model-independent fuzzy control technique to address

the issue of lacking an accurate performance-power model

due to high workload dynamics. It adaptively manages the

energy consumption of the server system by manipulating the

frequency of CPUs according to the workload fluctuations.

Because of complex interactions between the batching con-

trol loop and the DVFS-enabled power control loop, we design

a coordinator between the two-layer controls to coordinate

application performance improvement and energy efficiency.

B. The Batching Strategy

The request batching approach works in two steps.

1) During each batching interval, requests incoming to the

front-tier Web server are classified into groups according

to the request content. The request classification is based

on its header URL information, which is a good predictor

of request content. Note that our work focuses on e-

transactional workloads and thus requests are of roughly

equivalent processing demand.

2) At the end of each batching interval, the request groups

are reordered in a new sequence by the length of each

group. The group with the largest number of batched

requests will be the first to be sent to the successor

application server. The reordering can reduce the average

request response time.

The batching interval length changes dynamically. Figure 2

illustrates the process with three continuous intervals.

1) At the end of the (k−1)th batching interval, the requests

collected during the interval will be sent to the multi-tier

server system. Meanwhile, the kth batching interval starts

collecting requests.

2) The multi-tier system completes the processing of the

requests collected during the (k−1)th interval at time tk.

Let Tp(k) denote the processing time of those requests.

The SLA monitor will measure the average response time

of the requests, denoted as r(k − 1). The cache monitor

will measure the cache hit rate of the requests, denoted

as h(k − 1).
3) The batching control takes the average response time

r(k − 1) and the cache hit rate h(k − 1) as the inputs.

It determines the current batching interval length T (k).

Fig. 3. The design of the fuzzy model predictive control (FMPC).

After a waiting period of Tw(k), the current batching

interval is over and the requests collected during the

interval will be sent to the multi-tier server system. At

the same time, the (k + 1)th batching interval starts.

IV. THE BATCHING CONTROL DESIGN

Due to the SLA requirement and high workload dynamics,

the batching interval length should be changed in a self-tuning

manner. It is a challenging problem. A longer batching interval

can accumulate more requests for the same content, which can

increase the cache hit rate and reduce the average response

time. However, batching will also delay the processing of those

requests, resulting in longer average response time. The SLA

requirement might be violated. Unfortunately, there does not

exist a linear relationship between the average response time

and the batching interval length, due to the high complexities

of multi-tier Internet service architecture and high dynamics

of workloads.

We propose to use fuzzy model predictive control (FMPC).

The rationale is that FMPC can effectively capture nonlinear

behaviors through fuzzy modeling and quickly adapt to the

workload fluctuations through predictive control for meeting

the SLA. The strengths of FMPC include the following:

1) It simplifies nonlinear modeling of a complex system

behavior by using a set of linear sub-models captured

by the fuzzy rules.

2) It performs optimized control over the entire operating

space of a nonlinear problem. The optimization can be

achieved for each sampling period based on a sub-model.

3) It inherits several benefits of predictive control such as

control accuracy and stability.

Figure 3 illustrates the design of the FMPC-based batching

control loop. The inputs are the average response time r(k−1)
and the cache hit rate h(k − 1) of requests in the (k − 1)th
batching interval. The output is the length of the next batching

interval T (k).
We design a fuzzy model that describes the relationship

between the controlled variable and the manipulated variable.

In the model, the controlled variable u(k) is the batching

interval length T (k), and the manipulated variable y(k) is

the average response time r(k). The model is updated every

control period with an online self-tuning component. The

optimizer is used to find the optimal value of the batching

interval length T (k).
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A. The Fuzzy Model

We adopt a multiple-input-single-output fuzzy model to

describe the complex behaviors of a coupled system. The

model is of the input-output NARX type (Nonlinear Auto

Regressive model with eXogenous inputs) as follows.

y(k + 1) = R(u(k), h(k), ξ(k)). (1)

R is the relationship between the input variables and the output

variable. The input variables are the current input u(k), the

variable parameter h(k) and the regression vector ξ(k). The

regression vector ξ(k) contains a number of lagged outputs

and inputs of the previous control periods. It is represented as

ξ(k) = [(y(k), y(k − 1), · · · , y(k − ny)),

(u(k), u(k − 1), · · · , u(k − nu))]
T

(2)

where ny and nu are the number of lagged values for outputs

and inputs. Let ρ denote the number of elements in the

regression vector ξ(k), that is,

ρ = ny + nu. (3)

R is the rule-based fuzzy model that consists of Takagi-Sugeno

rules [2]. A rule Ri is represented as

Ri : IF ξ1(k) is Ωi,1, ξ2(k) is Ωi,2, · · · , and ξρ(k) is Ωi,ρ

u(k) is Ωi,ρ+1 and h(k) is Ωi,ρ+2

THEN yi(k + 1) = ζiξ(k) + ηiu(k) + ωih(k) + θi.
(4)

Here, h(k) is the cache hit rate. Ωi is the antecedent fuzzy

set of the ith rule, which is composed of a series of subsets:

Ωi,1,Ωi,2, · · · ,Ωi,ρ+2. ζi, ηi and ωi are parameters, and θi is

the offset. Their values are obtained by offline training.

Each fuzzy rule describes an operating space of the nonlin-

ear system model. The spaces have some overlaps. So each

output contains several fuzzy rules. For example, the inputs

u(l), h(l) may be included in Rf and Rg at the same time.

So the output y(k + 1) is computed as the weighted average

value by the rules. That is,

y(k + 1) =

∑K
i=1 γi(ζiξ(k) + ηiu(k) + ωih(k) + θi)∑K

i=1 γi
. (5)

In Eq. (5), K is the number of rules for the output. γi is

the degree of fulfillment for the ith rule. The value of γi
is the product of the membership degrees of the antecedent

variables in that rule. Membership degrees are determined by

fuzzy membership functions associated with the antecedent

variables. The model output in Eq. (5) is expressed in the

form of

y(k + 1) = ζ∗ξ(k) + η∗u(k) + ω∗h(k) + θ∗. (6)

The aggregated parameters ζ∗, η∗, ω∗ and θ∗ are the

weighted sum of vectors ζi, ηi, ωi and θi respectively.

Fig. 4. A self-tuning module of FMPC.

B. Online Self-Tuning

Due to high workload dynamics, we design an online self-

tuning module to adapt the fuzzy model. Fig 4 shows the

schematic representation of the self-tuning module. It aims to

minimize the prediction error of the fuzzy model e(k), e(k) =
y(k)− ŷ(k). y(k) is the measured output value of the control

system and ŷ(k) is the model’s predicted value for y(k).
The fuzzy model consists of many rules. If e(k) �= 0, we

apply a recursive least squares (RLS) method to adapt the pa-

rameters of the current fuzzy rule [14]. The technique updates

the model parameters as new measurements are sampled from

the runtime system. It applies exponentially decaying weights

on the sampled data so that higher weights are assigned to

more recent observations.

We express the fuzzy model output in Eq. (5) as follow:

y(k + 1) = φ(k)X + e(k) (7)

where e(k) is the error between the actual output and predicted

output. φ(k) = [φT
1 , φ

T
2 , .., φ

T
ρ ] is a vector composed of the

model parameters. X = [σ1X(k), σ2X(k), .., σρX(k)] where

σi is the normalized degree of fulfillment or firing strength

of ith rule and X(k) = [ξ(k)T , u(k)] is a vector containing

the current and previous outputs and inputs of the control

system. The parameter vector φ(k) is estimated so that the cost

function in Eq. (8) is minimized. We apply both the current

error e(k) and the previous error e(k − 1) to estimate the

parameter vector.

Cost =
k∑

k−1

(e(k)2 + τe(k − 1)2). (8)

Here τ is a positive number smaller than one. It is called

“forgetting factor” as it gives higher weights on more recent

samples in the optimization. It determines in what manner the

current prediction error and old errors affect the update of

parameter estimation. The parameters of the fuzzy model are

updated according to the RLS method as follows:

φ(k) = φ(k − 1) +Q(k)X(k − 1)[y(k)−X(k − 1)φ(k − 1)]

Q(k) =
1

τ
[Q(k − 1)− Q(k − 1)X(k − 1)XT (k − 1)Q(k − 1)

τ +XT (k − 1)Q(k − 1)X(k − 1)
]

(9)

Here Q(k) is the updating matrix. The initial value of φ(0) is

the value obtained in an offline identification. The initial value

of Q(0) is equal to (XTX)−1.
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Fig. 5. The expert fuzzy control design.

C. The Optimizer Design

Once the model is established, it is used as a prediction

tool by the optimizer to search for the optimal batching length

u(k + 1). The cost objective function for the optimization is

formulated as:

J = a ‖ y(k + 1)− yref ‖2 +b ‖ Δu(k) ‖2 (10)

where Δu(k) = u(k + 1)− u(k) (11)

The first part in Eq. (10) reflects the predictive error between

y(k+1) and yref . Variable y(k+1) is the predicted average re-

sponse time of the next batching interval according to the fuzzy

model. Parameter yref is the SLA on the average response

time. The second part in Eq. (10) indicates the control effort.

The amount of Δu(k) is the batching interval adjustment in

every control period. Parameters a and b describe the weight

of control accuracy and system stability, respectively.

The optimization problem is subject to the constraint that

the batching interval length must be bounded by the SLA on

the average response time. That is, Δu(k) + u(k) ≤ SLA.

In the presence of a nonlinear model, a nonconvex opti-

mization problem must be solved at each sampling period.

The optimization problem is a Quadratic-Programming (QP)

problem, which can be effectively solved numerically.

V. POWER CONTROL

The multi-tier server system exhibits significant variations in

the utilization of CPU resources due to the dynamic behaviors

of workloads [18], [24], [25]. This system characteristics can

be exploited for CPU power management. Our power control

system utilizes DVFS technique to dynamically scale the CPU

frequency of the server system in response to time-varying

resource demands.

We design a DVFS-enabled power control based on the

model-independent expert fuzzy control (EFC) technique to

minimize the energy consumption of the server system. The

EFC technique allows the DVFS-enabled power control to

make online decisions based on server system operations

and historical experiences. Its model-independency addresses

a practical issue of control design, the lack of an accurate

performance-power model in a very complex system.

A. The Control Architecture

Figure 5 shows the architecture of the EFC design. EFC has

two inputs, α(k) and β(k). Input α(k) reflects the fluctuations

in the workload. It is given by Eq. (12), where V (k) is the

average system throughput in the kth control period. Input

β(k) reflects the CPU usage of the server system. It is given

by Eq. (13), where Tp(k) and Tw(k) are the process time and

waiting time in the batching interval respectively. The output

of EFC is the CPU frequency. It has three possible values, i.e.,

f(+1), f(0), and f(−1), which denote increasing, keeping

and decreasing the CPU frequency respectively.

α(k) =
V (k)− V (k − 1)

V (k − 1)
(12)

β(k) =
Tp(k)− Tw(k)

Tw(k)
(13)

B. The Control Rule

EFC aims to translate a human expert’s knowledge into a

set of control rules that manage the CPU frequency of the

server system. The control rules are defined using linguistic

variables corresponding to the two inputs, α(k) and β(k).
The fuzzification process converts the numeric inputs into

linguistic values such as NL(negative large), NM(negative

medium), NS(negative small), ZE(zero), PS(positive small),

PM(positive medium) and PL(positive large). The rules are in

the form of If-Then statements. For example, If α(k) is PL

and β(k) is PL, the adjustment in CPU frequency is f(+1).
The rationale behind this rule is that CPU frequency should

increase since the workload and usage of CPUs are growing.

Similarly various rules are designed to determine the CPU

frequency states based on the fluctuations in the workload and

CPU usages. Note that there are three possible output values

for the DVFS-enabled power control actions, f(+1), f(0) and

f(−1). If a CPU has more than three tunable frequency levels,

the rule table will contain more rules and output values for the

DVFS-enabled power control actions.

VI. COORDINATION OF BATCHING AND POWER

CONTROLS

The batching control determines each batching interval

length in order to achieve the SLA with respect to the

average response time. The power control determines the CPU

frequency of the server system in order to reduce energy

consumption by the DVFS technique. There are complex

interactions between the two control loops. On one hand, the

changes in the system behavior due to DVFS-enabled power

control actions affect the accuracy of batching control. On the

other hand, DVFS-enabled power control decisions are de-

pendent on some parameters that are affected by the batching

control. Therefore, we design a coordinator to integrate two

controls for system stability. Figure 6 shows the interactions.

A. DVFS Impact on Batching

The change of CPU frequency due to the DVFS technique

has a significant impact on the computing capacity of the

server system. As the result, the current system model used by

the batching control may not be accurate. The batching control

has the capability of updating the system model by the self-

tuning module at run time. However, it takes a few control
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Fig. 6. The coordinator and interactions.

intervals to improve the accuracy of the system model. The

coordinator is designed to decrease the impact of the initial

modeling inaccuracies with each CPU frequency change. It

achieves this goal by using a scaling factor λ to modify the

output of the batching control, which is the adjustment in

the batching interval length. The scaling factor is heuristically

determined according to the difference of computing capacity

at different CPU frequency states.

We illustrate the complex interactions between the batching

and DVFS actions with an example. Assume that an increase

in the workload causes the average response time of the server

system to be longer than the SLA target. As a result, the

batching control will reduce the batching interval length to

reduce the average response time. However, the DVFS may

increase the CPU frequency of the server system at the same

time. Thus, the adjustment in batching interval length is scaled

down by the coordinator to account for the increase in the

computing capacity of the server system.

B. Batching Impact on DVFS

The batching control has a significant impact on two inputs

of the DVFS-enabled power control. Input α(k), given by

Eq. (12), is a function of throughput that is dependent on the

batching control loop. Input β(k), given by Eq. (13), reflects

the change in CPU usage that is affected by the batching

interval length. The coordinator transmits two parameters from

the batching control to the power control. The power control

uses the two parameters as inputs to make the rule table.

A suitable control metric is necessary to synchronize the two

controls and achieve system stability. There are several factors

that determine the choice of control period such as the time

taken by a DVFS action, the scale of batching interval length,

etc. In modern processors, a DVFS frequency change takes

effect in about 100 ns. In many popular Internet applications,

the SLA on the average response time is about 500 ms to

1000 ms [24], [27]. In our work, the power control period is

chosen to be four times of the batching control period. Note

that it is also possible to determine the ratio between the two

control periods in a self-tuning manner according to the system

dynamics. Here, we consider a static ratio of four because the

time scale of the batching interval length and the DVFS action

time are relatively small.

VII. SYSTEM IMPLEMENTATION

A. Testbed

We built a testbed on a physical server. The server is

equipped with one Intel Q9550 quad-core processor and 8

GB memory. The processor supports three frequency levels: 2

GHz, 2.33 GHz, 2.83 GHz. The server is running CentOS 5.8

with Linux kernel 2.6.18.

We use RUBiS benchmark application for experiments as

previous studies [8], [14], [24]. RUBiS is an open source

multi-tier Internet benchmark application. It provides a web

auction application that is modeled in a similar way to

ebay.com. It characterizes the workload into three categories,

browsing, bidding, and selling. The RUBiS user emulates user

requests at different concurrent levels. We create one VM for

the RUBiS user emulator.

We create three VMs for the RUBiS benchmark application,

i.e., Apache web server at the first VM, PHP application server

at the second VM, and MYSQL database server at the third

VM. Each VM is allocated 1 VCPU and 512 MB memory.

All VMs use Ubuntu Server 10.04 with Linux kernel 2.6.35.

The mem.cache module and cache module are enabled in

the experiments. The Apache server responds to the HTTP

requests from clients with a dynamic webpage written in PHP.

Xen 3.1 is used for server virtualization. In Xen, the hyper-

visor is the lowest layer with the most privileges. When the

physical computer and the hypervisor boot, domain 0 (dom0),

is the first guest operating system that is booted automatically.

Dom0 has some special management privileges such as it can

direct resource access requests to the hardware. In our testbed,

dom0 is used to start the three VMs. The request batching

controller and the DVFS power controller are configured to

run as daemons in dom0 along with a response time monitor.

B. System Components

a) Cache Module: We disabled system cache

and enabled mod mem cache of Apache Web

server. MCacheMaxObjectSize is set to 1MB and

MCacheRemovalAlgorithm is set to LRU.

b) Batcher: The self-tuning batcher is a daemon program

running with the RUBiS Web server’s VM. The batcher con-

sists of several modules including requests batching, classifica-

tion, reordering and a monitor component to collect parameters

for batching interval and power controls. The requests are

released to the Web server in a back-to-back manner. In the

testbed, the self-tuning batching algorithm takes approximately

10 ms to execute. This overhead is negligible compared to the

average batching interval, which is in the range of 300-500

milliseconds.

c) Performance Monitor: We modified the RUBiS user

to support online measurement of user-perceived average re-

sponse time and system throughput. The cache hit rate monitor

is implemented as a small daemon program that runs in web

tier sever. It periodically collects the information from a log

file. The component runs in the RUBiS user emulator’s VM.

d) FMPC and EFC Controls: These two controls receive

the response time, the system throughput and the cache hit rate

and other parameters from the performance and power mon-

itors. Accordingly, they run the control algorithms presented

in Sections IV and V respectively. The component runs in the

RUBiS Web server’s VM.
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Fig. 7. Application performance improvement under the highly dynamic workload.

e) DVFS Actuator: For no interference, we disabled

the default DVFS controller in Ubuntu server. We

installed the cpufreq package in dom0 to provide

the functionality of controlling the CPUs frequency

of the physical server. It tunes the CPUs frequency

by writing the DVFS states into the system file

/sys/devices/system/cpu/cpu0/cpufreq/scaling.setspeed.

f) Coordinator: We set the scaling factor λ to be 0.95,

which is suitable for the available frequency states of 2 GHz,

2.33 GHz and 2.83 GHz.

VIII. PERFORMANCE EVALUATION

We demonstrate the performance of the self-tuning batching

with DVFS scaling approach in terms of both the average

response time and the system throughput under highly dy-

namic workloads. Then we present the improvement on energy

efficiency due to the self-tuning batching with DVFS scaling.

We further show the effectiveness of the approach under

different stationary workloads. Finally, we demonstrate the

cache size impact on the performance improvement by the

self-tuning batching approach with different request sizes.

We configure the RUBiS users to generate workloads of

different mixes as well as workloads of time-varying intensity.

As shown in table I, we create three different workload

scenarios by adjusting the number of concurrent users.

A. Performance Improvement of Self-tuning Batching

Figure 7(a) shows the workload used in the experiment,

which is a step-change workload similar to what used in [7],

[13], [24]. The number of concurrent users dynamically

changes from 650 to 1600. We compare the self-tuning batch-

ing approach with an fixed-interval batching approach. The

cache hit rate, response time, and throughput are sampled

every 30 seconds. As the work in [22], [27], our experi-

ments set the SLA of the system to be 1000 ms. A system

without batching is used as the baseline. The cache size of

mod mem cache is set to 20 MB.

Table II shows the process of the offline training based

fixed-interval batching. We executed 20 experiments with

different batching interval lengths using the workload trace.

The batching interval length varies from 50 ms to 1000 ms.

The results in Table II show that 300 ms is the optimal

TABLE I
PERFORMANCE IMPROVEMENT OF SELF-TUNING BATCHING.

Scenarios
Dynamic
Workload

Stationary Workload
(Underload)

Stationary Workload
(Overload)

Concurrent
users

[650, 1600] 800 1200

batching interval length that achieves the minimum average

response time under the particular workload trace.

TABLE II
OFFLINE TRAINING BASED FIXED-INTERVAL BATCHING.

Batching
Interval (ms)

Average
Resp. Time (ms)

Batching
Interval (ms)

Average
Resp. Time (ms)

50 993 550 1152
100 975 600 1279
150 1033 650 1335
200 983 700 1476
250 907 750 1533
300 847 800 1764
350 879 850 1930
400 936 900 1985
450 989 950 2257
500 1132 1000 2448

Figure 7(b) shows the comparison of the application’s

average response time due to the self-tuning batching, the

fixed-interval batching (using 300 ms interval length), and the

no-batching approach. The self-tuning batching outperforms

the fixed-interval batching and no-batching approaches by

7% and 18%, respectively. Figure 7(c) shows the throughput

comparison by the three approaches. The self-tuning batch-

ing outperforms the fixed-interval batching and no-batching

approaches by 6% and 13%, respectively.

When the workload increases (e.g., the 6th and the 14th
sample in Figure 7(a)), the average response time increases

and the throughput decreases as shown in Figure 7(b) and 7(c).

The reason is that the requests generated by the RUBiS user

have temporal dependencies between each other in different

sessions. Some requests can only be generated by RUBiS users

until the former requests have got feedback from the server

system. So when the workload increases, the average response

time of the requests increases. Accordingly, the throughput

decreases as the RUBiS users generate requests in lower rate.
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Fig. 8. Self-tuning batching behaviors under the highly dynamic workload.
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Fig. 9. Energy efficiency comparison under the highly dynamic workload.

Figure 8(a) shows how the self-tuning batching interval

length varies as the workload dynamics. It shows an opposite

trend between the batching interval length and the workload

volume. The batching interval length becomes shorter as the

workload increases. This is because a long batching interval

will increase the average response time when the workload

becomes higher. The fixed-interval batching is not able to

improve the performance under the highly dynamic workload.

In some cases such as the 11th sample, it even cannot maintain

the SLA requirement.
Figure 8(b) shows the comparison of the Web cache hit rate

in the three scenarios. Both the self-tuning and fixed-interval

batching approaches effectively increase the Web cache hit

rate. The self-tuning approach does not always outperform

the fixed-interval approach in terms of the cache hit rate. For

example, between the 11th and the 14th sample intervals, the

fixed-interval approach achieves higher Web cache hit rate than

the self-tuning approach does. This is due to the fact that the

fixed-interval approach uses a longer batching interval length

than the self-tuning approach. However, please note that the

gain due to the higher cache hit rate does not compensate the

increased delay due to the longer batching interval.
Figure 8(c) shows the comparison of CPU utilization by

different approaches. It demonstrates that self-tuning batching

and fixed-interval batching can effectively reduce CPU uti-

lization. The fixed-interval batching has lower CPU utilization

than self-tuning batching since it always has the highest CPU

frequency state. No batching approach has the highest CPU

utilization due to its lowest cache hit rate.
The results in Table III show that the self-tuning batching

TABLE III
PERFORMANCE IMPROVEMENT OF SELF-TUNING BATCHING.

Batching
Strategy

Average
Resp. Time

Throughput
Energy

Efficiency
Fixed-interval 10% 6% 13%

Self-tuning 18% 13% 13%

approach is able to significantly improve the average response

time and the throughput. The reason is it is able to find the

favorable batching interval length under the highly dynamic

workload due to its batching control design.

B. Energy Efficiency Improvement of Self-tuning Batching

We next demonstrate the effectiveness of integrating power

control with batching control for energy efficiency under the

highly dynamic workload. When the workload fluctuates, the

power control modifies the frequency of CPUs to follow the

fluctuations in a self-tuning manner. The frequency states of

CPUs in our experiment start from the lowest level (2 GHz).

Figure 9(a) shows how the frequency state of the CPU

is dynamically adjusted as the workload varies due to two

approaches, DVFS only and self-tuning batching with DVFS.

Figure 9(b) depicts the power saving of the two approaches

compared to the baseline approach that has no batching and

no DVFS. The size of the area below a power state curve

represents the energy saving of the server. Figure 9(c) shows

the energy saving of two approaches in each control interval.

Note that in some intervals, i.e., the 6th, 12th, and 14th, there

is no energy saving because two approaches both run the CPU

at the highest frequency. Overall, compared to the baseline

47

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:53 UTC from IEEE Xplore.  Restrictions apply. 



 400

 500

 600

 700

 800

 900

 1000

 0  5  10  15  20

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

Sample Interval(-th)

No Batching
Self-tuning Batching

(a) Response time.

 5000

 6000

 7000

 8000

 9000

 10000

2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Sample Interval(-th)

No Batching
Self-tuning Batching

(b) Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20

W
eb

 C
ac

he
 H

it 
R

at
e

Sample Interval(-th)

Self-tuning Batching
No Batching

(c) Web cache hit rate.

Fig. 10. Performance improvement in an underloaded system.
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Fig. 11. Performance improvement of slightly overloaded system.

TABLE IV
PERFORMANCE IMPROVEMENT UNDER STATIONARY WORKLOADS.

Workload
Scenarios

Average
Resp. Time

Throughput
Energy

Efficiency
Underload 15% 14% 7%
Overload 19% 17% 3%

approach, the DVFS only approach saves 7% total energy

usage and the self-tuning batching with DVFS approach saves

13% total energy usage. The energy consumption results are

estimated based on the configured frequency.

C. Self-tuning Batching with Stationary Workloads

We evaluate the average response time and the throughput

due to the self-tuning batching in two scenarios under the

stationary workloads. The first is an underloaded scenario

in which the average response time can satisfy the SLA

requirement. The second is a slightly overloaded scenario

in which the average response time may violate the SLA

requirement. We demonstrate the effectiveness of the batching

mechanism by comparing the performance metrics due to the

self-tuning batching and no batching.

For the underloaded scenario, we set the RUBiS user with

browsing workload mix and 800 concurrent users. It is a

moderate workload for our testbed with respect to the SLA.

Figure 10(a) plots the average response time. The self-

tuning batching approach improves the average response time

by 15%. It significantly reduces the average response time

from 712 ms to 619 ms. Figure 10(b) shows the throughput

comparison between the self-tuning batching and no-batching

approaches. The batching approach improves the throughput

by 14%. Figure 10(c) shows that the Web cache hit rate

increases by the batching approach. These results demonstrate

that the self-tuning batching can significantly improve the

application performance for the underloaded scenario.

For the slightly overloaded scenario, we set the RUBiS user

with browsing workload mix and 1200 concurrent users.

Figure 11(a) plots the average response time. In the no-

batching scenario, it is 1091 ms. It indicates the system is

slightly overloaded since the SLA on the average response

time is 1000 ms. With the self-tuning batching approach, the

average response time is significantly reduced to 917 ms. This

is 19% improvement compared to that by no-batching.

Figure 11(b) shows that the system throughput due to the

self-tuning batching and no-batching approaches. The self-

tuning batching improves the throughput by 17%. Figure 11(c)

shows that the Web cache hit rate due to the self-tuning

batching is 3 times higher than that of no batching.

As shown in Table IV, these two experiments demonstrate

the effectiveness of the self-tuning batching approach for im-

proving the system performance and server energy efficiency

in both the underloaded and the overloaded scenarios.

D. Cache Size Impact on Performance Improvement

Figure 12 shows the average response time and throughput

improvement due to the self-tuning batching approach with

different cache sizes and average request sizes. It illustrates

that the performance improvement decreases as the cache size

increases from 20 MB to 200 MB. This is because the benefit

of self-tuning batching is reduced when the cache is large
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Fig. 12. Cache size impact on performance improvement.

enough to hold frequently accessed data items. When the

cache size is fixed, the performance improvement increases

as the average request size increases from 2 KB to 50 KB.

The self-tuning batching can improve the locality of request

reference by delaying requests for the same content and

reorder them according to their access frequencies. It thus

effectively increases the cache hit rate in a self-tuning manner.

IX. CONCLUSION

We proposed and developed a self-tuning batching approach

integrated with DVFS to simultaneously improve the perfor-

mance of applications and energy efficiency of the server sys-

tem. Its core is a novel and practical two-layer control system

that adaptively adjusts the batching interval and frequency

states of CPUs according to the service level agreement and

the workload characteristics. As demonstrated by experimental

results based on the testbed implementation, its main contribu-

tions are the precise control of batching interval length to avoid

SLA violations and integration of two controls for system

stability. The new approach can improve the application’s

average response time by 18%, system throughput by 13%,

and reduce the energy consumption of the server system by

13% at the same time.

In future work, we will extend the proposed approach for

heterogeneous workloads in virtualized server clusters.
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