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Abstract—The cost of powering servers, storage platforms and
related cooling systems has become a major component of the
operational costs in big data deployments. Hence, the design
of energy-efficient Hadoop clusters has attracted significant
research attention in recent years. However, existing studies
do not consider the impact of the complex interplay between
workload and hardware heterogeneity on energy efficiency. In
this paper, we find that heterogeneity-oblivious task assignment
approaches are detrimental to both performance and energy
efficiency of Hadoop clusters. Importantly, we make a counter-
intuitive observation that even heterogeneity-aware techniques
that focus on reducing job completion time do not necessarily
guarantee energy efficiency. We propose a heterogeneity-aware
task assignment approach, E-Ant, that aims to minimize the
overall energy consumption in a heterogeneous Hadoop cluster
without sacrificing job performance. It adaptively schedules
heterogeneous workloads on energy-efficient machines, without
a priori knowledge of the workload properties. Furthermore,
it provides the flexibility to tradeoff job fairness and energy
efficiency in a Hadoop cluster. E-Ant employs an ant colony
optimization approach to generate task assignment solutions
based on the feedback of each task’s energy consumption
reported by Hadoop TaskTrackers. Experimental results on a
heterogeneous cluster with varying hardware capabilities show
that E-Ant improves the overall energy savings for a synthetic
workload from Microsoft by 17% and 12% compared to Fair
Scheduler and Tarazu respectively.

I. INTRODUCTION

As big data becomes a norm in various industries, the use of
Hadoop framework to analyze the ever-increasing volume of
data will keep growing. This trend is driving up the need for
designing energy-efficient Hadoop clusters in order to reduce
the operational costs and the carbon emission associated with
its energy consumption [3], [20], [22]. However prevalent
power management techniques, which involve server consoli-
dation and turning off idle machines, are not readily applicable
to Hadoop clusters. It is due to the distributed data-storage
and replication requirement of Hadoop platforms, which is
essential for job performance and fault tolerance. Furthermore,
a key challenge that has been often overlooked by existing
studies is the complex interplay between the heterogeneity
in hardware [15] and workload [14] characteristics, which is
prevalent in production clusters.

A recent report [15] from Google suggests that there are
more than ten generations of machines with different specifi-

cations in its production cluster. Such hardware heterogeneity
occurs because servers are gradually upgraded and replaced
in large scale clusters. Hardware heterogeneity could also
arise from the possibility of deploying low power nodes in
server clusters [16]. At the same time, production clusters
are commonly shared by multiple users for diverse workloads
with different resource demands, priorities and performance
objectives. The co-location of heterogeneous workloads on the
shared server infrastructure has been an important trend for
gaining resource utilization efficiency.

In this paper, we observe that the heterogeneity of both
machine and workload in Hadoop clusters causes complex and
time-varying energy consumption characteristics at run-time.
As shown by our motivational case study in Section II, the
energy efficiency of heterogeneous machines varies with the
type of workload as well as the rate at which the Hadoop tasks
are assigned to the machines. Consequently, heterogeneity-
oblivious approaches could result in both energy wastage
and performance degradation. For example, we ran a Hadoop
application from the PUMA benchmark, i.e., Wordcount, with
50 GB input data from wikipedia, on a Core i7 based desktop
and an Atom based server respectively. We found that the
desktop takes 63 minutes of run time and 183 KJ of energy
while Atom takes 178 minutes and 136 KJ to complete the job.
It implies that job scheduling approaches that merely aims to
reduce the job completion time do not guarantee a reduction
in energy consumption of heterogeneous machines.

We propose a heterogeneity-aware task assignment ap-
proach, E-Ant, that aims to minimize the overall energy
consumption in a heterogeneous Hadoop cluster without de-
grading job performance. There are several challenges in
achieving the stated goals. First, a static task assignment policy
based on workload and hardware profiling may not be effective
due to the dynamic nature of energy usage characteristics,
and uncertainties about the diverse workload-mix. Therefore,
the task assignment policy needs to be adaptive. Second, the
difficulty of directly measuring energy usage at the workload-
level granularity introduces the need for an accurate energy
usage model. Furthermore, the accuracy of energy usage
estimation can be adversely affected by transient system noise
attributed to data skew, network contention, etc. Third, the
objective of achieving energy efficiency through adaptive task
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Fig. 1. Energy efficiency changes with platforms and workloads on a heterogeneous Hadoop cluster.

assignment may inadvertently conflict with job fairness.
We address the above challenges, and make the following

contributions:
• We design an effective mechanism, E-Ant, to improve

the energy efficiency of heterogeneous Hadoop clusters
through adaptive task assignment. E-Ant’s core is an ant
colony optimization based algorithm that adaptively gen-
erates task assignment solutions based on the feedback of
energy usage on heterogeneous machines. It monitors task
execution of Hadoop jobs comprising of multiple waves
of tasks, and optimizes the task assignments on-the-fly.

• To analyze the energy usage at workload-level granular-
ity, we develop a model that estimates the energy con-
sumption of completed tasks based on the time-varying
CPU utilizations of its execution process and the amount
of time that the tasks run at different CPU utilizations.
This is motivated by the observation that CPU resource
is the major power consumer in most clusters [23].

• To improve the robustness of our energy model against
transient system noise, we develop a mechanism to esti-
mate the energy usage of a Hadoop task by averaging the
energy estimates of the same or similar job’s tasks across
homogeneous subset of machines from the entire cluster.

• We introduce a tuning parameter in our ant colony
optimization problem to enable flexible tradeoff between
energy efficiency and job fairness. Furthermore, we con-
duct sensitivity analysis of important tuning parameters
that are used in E-Ant design.

We have implemented E-Ant in open-source Hadoop
and performed comprehensive evaluations with representative
Hadoop benchmark applications. Experimental results on a
heterogeneous cluster with varying hardware capabilities show
that E-Ant improves the overall energy consumption of a
synthetic workload from Microsoft by 17% and 12% compared
to Hadoop Fair Scheduler and Tarazu [4] respectively.

The rest of this paper is organized as follows. Section II
presents a motivation example. Section III describes the system
design. Section IV presents the online algorithm. Section V
gives the testbed implementation. Section VI presents the
experimental results and analysis. Section VII reviews related
work. Section VIII concludes the paper.

II. MOTIVATION

We conducted a case study on a heterogeneous Hadoop clus-
ter composed of two types of machines listed in Table I. Three

TABLE I
MULTIPLE MACHINE TYPES IN THE CLUSTER.

Machine model CPU Memory Disk

Desktop Core i7 8*3.4GHz 16 GB 1 TB
PowerEdge Xeon E5 24*1.9GHz 32 GB 1 TB

MapReduce applications from the PUMA benchmark [1], i.e.,
Wordcount, Terasort and Grep, each with 300 GB input data,
were run on the cluster. We measured the power consumption
and the task throughput on the different type machines under
the various task submission rates. We observed the energy
efficiency of individual machines in terms of the throughput
per watt, which is widely used by previous studies [11]. We
compared the energy efficiency in two different scenarios –
homogeneous workload on heterogeneous hardware and het-
erogeneous workload on homogeneous hardware.

Heterogeneous hardware impact. Figure 1(a) shows that
the energy efficiency of machines with different hardware
configurations varies differently as we change the task arrival
rate. The Core-based desktop achieved better energy efficiency
when the task arrival rate was lower than 12 (tasks/min).
However, the energy efficiency on the Xeon-based server
was better when the task arrival rate was higher than 12
(tasks/min). In order to analyze the root cause of such behav-
ior, we measured the power consumption of the two machines
under two representative scenarios in the experiment: light
workload (10 tasks/min) and heavy workload (20 tasks/min).
Figure 1(b) shows that most power consumption of the Xeon
based server comes from the idle system usage when the server
utilization is relatively low. However, when the utilization
increases, the power consumption of Xeon server increases
slowly compared with that of the core based desktop. This is
the reason that Xeon-based server is more energy-efficient for
heavy workload while less energy-efficient for light workload.
Such characteristic of heterogeneous hardware motivates us
to improve the overall energy efficiency of the cluster by
dynamically assigning tasks to different machines.

Heterogeneous workload impact. Figure 1(c) shows the
variation in the energy efficiency of a homogeneous cluster
consisting of Xeon-based servers only, when different Hadoop
benchmarks were executed. The result suggests that Word-
count, Grep, and Terasort achieved their maximum energy
efficiency at different task arrival rates, which were 20, 25, and
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Fig. 2. The system framework of E-Ant.

35, respectively. This is due to the fact that different workloads
have very different resource demands, which in turn impact the
energy usage pattern. Figure 1(d) shows the breakdown of job
completion times of the three applications used in the exper-
iment. It reveals that Wordcount is map-intensive (i.e., CPU-
intensive) while Terasort and Grep are shuffle/reduce-intensive
(i.e., IO-intensive). The result demonstrates the importance of
considering the workload heterogeneity when assigning tasks
in order to maximize energy efficiency.

[Summary] The above study shows that the energy effi-
ciency of a Hadoop cluster can be substantially improved from
two aspects:
• Selecting energy-efficient hosting machines based on the

different power characteristics of machines;
• Assigning suitable number of tasks based on the different

resource demand of workloads.
In other words, Hadoop tasks should be assigned to the
machines that deliver the highest energy efficiency for the
specific workload type. However, the dynamic nature of energy
usage characteristics and uncertainties about the workload mix
in production environments further complicate the problem.
These observations motivate us to develop a self-adaptive and
heterogeneity-aware task assignment approach to improve the
energy efficiency of a Hadoop cluster.

III. E-ANT DESIGN

A. Architecture

E-Ant is a self-adaptive task assignment approach that aims
to improve the energy efficiency of a heterogeneous Hadoop
cluster. As shown in Figure 2, E-Ant fits seamlessly with the
Hadoop architecture. Its main components are:
• Adaptive task assigner uses an ant colony optimization

(ACO) approach to make task assignment decisions based
on the task-level feedback reported by the task analyzer.
The basic idea is that the Hadoop slave machines that are
highly ranked by the task analyzer will likely be assigned
with more of the same type of tasks.

• Task analyzer uses energy models to estimate the energy
consumption of individual tasks at different machines.
Each model captures the energy usage characteristics of
a particular machine type, and takes into account the CPU
utilization of individual tasks, and its execution time to
estimate task-level energy usage.

• Information exchanger facilitates the grouping of task
information related to homogeneous subset of machines

Fig. 3. Task assignment by applying ACO.

and jobs available in the Hadoop cluster. E-Ant uses this
information to improve the estimation accuracy of its
energy models in the presence of system noise.

E-Ant is designed to take advantage of the fact that Hadoop
applications running in a shared cluster often execute several
waves of tasks. It operates as follows. When jobs are submitted
to the JobTracker, it initially follows Hadoop’s default
behavior to assign the tasks to various TaskTrackers. At
the end of each control interval, the task analyzer residing in
the JobTracker estimates the energy consumption of the
completed Hadoop tasks, and ranks the machines accordingly.
The adaptive task assigner uses this information to adjust its
task assignment policy for the next control interval. This im-
plies that the JobTracker will schedule all tasks according
to the particular task assignment policy within the next control
interval. After rounds of adjustment, task assignments of var-
ious Hadoop jobs converge to energy-efficient solutions. This
process is repeated until the job completes after several waves
of task execution. E-Ant does not require a priori knowledge
of submitted jobs due to its adaptive task assignment approach.

B. Applying ACO to Task Assignment Problem

We now present a high-level overview of how Ant Colony
Optimization (ACO) can be used to solve the dynamic task
assignment problem in a heterogeneous Hadoop cluster. ACO
is a probabilistic technique for solving computational problems
which can be reduced to finding good paths through graphs.
Here, an ant is a simple computational agent, which iteratively
constructs a solution for the problem at hand. We present a
background description of ACO approach in Appendix A.

Figure 3 illustrates the problem of assigning tasks belonging
to multiple Hadoop jobs to different machines. We consider
each job as an ant colony and each task as an ant. The
assignment of a task to a machine is treated as a path that
an ant can take. In the rest of this paper, job and colony,
task and ant, thus are used interchangeably. The goodness of
a path is evaluated based on the energy consumption of a
task completed on a particular machine. This information is
encoded as the pheromone value of a path, and is updated as
more tasks are completed. E-Ant periodically updates its task
assignment policy based on the pheromone values of various
paths at that time. Thus, E-Ant applies the ACO approach to
adaptively choose energy-efficient hosts for task assignment.
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TABLE II
CONSTRUCTION GRAPH OF 3 MACHINES AND 4 TASKS.

HM \ TS T 1
1 T 1

2 T 2
1 T 2

2

M1 E(T 1
1 (1)) E(T 1

2 (1)) E(T 2
1 (1)) E(T 2

2 (1))
M2 E(T 1

1 (2)) E(T 1
2 (2)) E(T 2

1 (2)) E(T 2
2 (2))

M3 E(T 1
1 (3)) E(T 1

2 (3)) E(T 2
1 (3)) E(T 2

2 (3)

IV. ADAPTIVE TASK ASSIGNMENT

In this section, we present the detailed design of ACO-based
algorithm for adaptive task assignment. First, we formulate
the dynamic task assignment problem in a heterogeneous
environment. Then we present a model to evaluate the en-
ergy consumption of each task based on its CPU utilization
and task execution time. Finally, we present the ACO-based
optimization algorithm to obtain an adaptive task assignment
scheme, and describe the related design components.

A. Problem Statement and Graph Construction

1) Problem Formulation: We consider a Hadoop cluster
with M slave machines, indexed 1,... , m (m ≤M ). Assume
that there are J jobs hosted in the cluster and each job (e.g.,
job j) consists of a number of tasks, i.e., T j

1 , ..., T
j
n (n ≤ N ).

We formalize E-Ant’s goal as assigning the tasks of Hadoop
jobs to different machines in order to minimize the overall
energy consumption under certain constraints. The problem
can be expressed as follows:

Min
J∑

j=1

N∑
n=1

M∑
m=1

[E(T j
n(m))],

s. t.
J∑

j=1

N∑
n=1

|T j
n(m)| ≤ mslot.

s. t. P (j,m) = f(H)

(1)

Here, E(T j
n(m)) represents the energy consumption of the

nth task from the jth job that is assigned to the mth machine.
The first constraint ensures that the number of concurrent task
executions from all jobs on the machine m must be bounded
by the number of available slots on that machine. The second
constraint ensures that the probability of assigning a task
from the jth job to the mth machine depends on heuristic
information such as data locality, job fairness, etc.

2) Construction Graph: Table II illustrates a visual rep-
resentation of the task assignment problem formulated in
Equation 1. We draw an analogy between the task assignment
problem and a colony of ants exploring alternative paths
towards its destination. Given a table of m rows and n columns,
an ant seeks to travel in such a way that all of the following
constraints are satisfied: (1) one and only one cell is visited for
each of the columns; (2) the number of the visited cells on the
same row is no greater than the available slots on individual
machines (i.e., satisfy the constraint in Eq. 1).

B. Energy Consumption Model

In order to make task assignment decisions that improve
energy efficiency, it is necessary to evaluate the energy used
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Fig. 4. Estimation accuracy of energy model.

by each task execution. E-Ant uses a simple and feasible
energy model based on CPU power consumption to evaluate
the energy consumption of tasks at a fine-grained level. Since
Hadoop tasks are executed on a JVM hosted at slave machines,
we consider the energy consumed by this JVM as the task
energy consumption. We estimate the energy consumption of
individual tasks (JVM) based on its CPU resource utilization
at process-level. The energy consumed by the nth task from
the jth job on machine m is estimated as follow:

E(T j
n(m)) =

Tfinish∑
Tstart

(
Poweridlem

mslot
+ αm × u(T j

n(m)))×Δt,

(2)
Here, Poweridlem ∈ R

+ is the power consumption of machine
m when it is idle. It is divided by the number of slots available
in the machine, since each Hadoop task occupies one slot.
αm ∈ R

+ represents how the power consumption changes
with the change in CPU utilization. It can be obtained by using
a standard system identification technique, the least squares
method. Both of these metrics are constant for a particular
machine type. u(T j

n(m)) is the average CPU utilization of the
execution process for the task T j

n(m) during the time interval
Δt. Tstart and Tfinish are the task start time and the task
finish time. These metrics are collected and reported by the
TaskTrackers running on each machine.

In order to evaluate the accuracy of the model, we compared
the actual energy consumption of a machine running a partic-
ular job with the sum of the estimated energy consumption
of all tasks running on that machine. We set the granularity
of CPU utilization measurement Δt to three seconds (the
default heartbeat interval of Hadoop). Figure 4(b) and 4(a)
show the actual and estimated energy consumption of a Dell
desktop, and a Xeon E5 server when running the Wordcount,
Grep, and Terasort benchmarks respectively. We evaluated the
estimation accuracy of the model in terms of the normalized
root mean square error (NRMSE), a standard metric for
deviation. Our results show that the measured and estimated
data are very close, with the NRMSE 7.9%, 10.5% and 11.6%
for Wordcount, Terasort and Grep jobs, respectively.

C. ACO-Based Adaptive Task Assignment

1) Solution Construction: Given a set of tasks and hetero-
geneous machines, E-Ant follows the principle of ant colony
optimization to stochastically assign the tasks to the available
machines. The probability that E-Ant will assign a task of the
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Fig. 5. The probabilistic decision-making process example.

jth job to the mth machine during the time interval t + 1 is
given by:

Pt+1(j,m) =
τt(j,m)

Σm′∈Mτt(j,m′)
. (3)

Here, τt(j,m) is the pheromone value associated with a
particular path for a colony of ants. In other words, it indicates
the goodness of assigning a task of the jth job on the mth

machine. Σ′m ∈ M denotes the set of all completed tasks of
the jth job across multiple machines.

Figure 5 shows a simple example to introduce the decision-
making process of the proposed approach for a single job
(ant colony). Here, we omit the symbol j from τt(j,m) for
better readability. Assume that a set of tasks need to be
assigned to two machines, i.e., machine A and machine B.
At the first time interval (t=1), there is an equal pheromone
(τ1(A) = τ1(B) = 1) for the two possible task assignment
paths. Correspondingly, tasks have the same probability (i.e.,
P1(A) = P1(B) = 1

1+1 = 50%) to be assigned to the
machine A and B. However, the pheromone of machine A
(τ2(A) = 1.5) is larger than that of machine B (τ2(B) = 0.83)
during the second interval. It means that machine A has a
higher probability (P2(A) = 1.5

1.5+0.83 = 64%) to host such
type of tasks than machine B does (P2(B) = 0.83

1.5+0.83 = 36%).
In the next section, we describe the merits and mechanism of
updating the pheromone values.

2) Pheromone Updating: E-Ant follows two principles of
ant colony optimization: Randomness and Positive Feedback.

• Randomness is incorporated in E-Ant by the fact that its
task assignment policy is based on probability as shown
in Equation 3. This allows E-Ant to explore new solutions
which may lead to a globally optimal solution, instead of
getting stuck in a local optimum.

• Positive feedback exploits good solutions by laying more
pheromone on the task assignment paths that lead to less
energy consumption.

E-Ant updates the pheromone value of various assignment
paths periodically based on the task-level feedback collected
from the previous control interval as follows:

τt+1(j,m) = (1 − ρ)τt(j,m) + ρΣn∈NΔτnt (j,m) (4)

Δτnt (j,m) =
Σm′∈MΣn′∈NE(T j

n′(m
′))/N

E(T j
n(m))

. (5)

Here, Δτnt (j,m) represents the energy efficiency of com-
pleting the nth task of the jth job on the mth machine,
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and is responsible for an increase in the pheromone value
of the assignment path. It is calculated as the ratio of the
average energy consumption of all completed tasks of the jth
job to the energy consumption of its nth task on the mth

machine. ρ is the pheromone evaporation coefficient. It is
used to avoid unlimited accumulation of pheromone trails from
previous control intervals. The proposed pheromone updating
mechanism encourages a balanced form of exploitation of
previous experiences (the first item) and exploration of new or
improved paths (the second item). Equation 4 also implies that
the higher the task completion rate of the jth job on the mth

machine, the greater the chance of updating the pheromone
value of that path. Thus, the task assignment policy favors
those machines that do more work and consume less energy.

Continuing with the example in Figure 5, we now assume
that the energy consumption of individual tasks on machine A
is 2 KJ and that on machine B is 3 KJ during the first interval.
Suppose that machine A completes two tasks, and machine B
completes one task during the interval. The evaporation coeffi-
cient ρ is set to 0.5. Then we obtain the value of pheromone on
machine A as: τ2(A) = (1−0.5)∗1+0.5∗2∗ (2+2+3)/3

2 = 1.66

and τ2(B) = (1 − 0.5) ∗ 1 + 0.5 ∗ (2+2+3)/3
3 = 0.88. This

means that E-Ant has a higher probability of assigning tasks
to machine A, which is more energy efficient than machine B.

3) Multi-job scenario: E-Ant allows multiple ant colonies
to construct their solutions in parallel for multiple jobs.
Each ant colony updates its pheromone values periodically as
described in the single job scenario. Furthermore, E-Ant uses
pheromone updating as an interaction mechanism not only
between the tasks of the same job but also among multiple
jobs. For this purpose, E-Ant applies negative feedback to
update the pheromone value across jobs as follows,

Δτnt (j
′,m) =

{
+Δτnt (j,m) if j = j’,
−Δτnt (j,m) Otherwise.

(6)

The negative feedback mechanism applies an aggressive
pheromone updating approach among competing jobs. It en-
courages the most energy-efficient machine to host more tasks
from a specific job by giving a positive pheromone update. At
the same time, it gives a negative pheromone update−Δτt(m)
for other jobs to reduce their probability of assigning tasks on
this machine.

4) Heuristic Information: We present a heuristic function
that further improves the ACO-Based adaptive task assignment
by incorporating two factors: data locality and job fairness.
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Prioritizing data locality. The first property of the heuristic
function is designed to prioritize data locality when making
task assignment decisions. This is because Hadoop job exe-
cution times can be substantially reduced by assigning tasks
to the machine that can access the input data locally. The
motivation is that better data locality will result in shorter job
completion times, and potentially lead to better energy effi-
ciency. Figure 6 depicts the job completion times of multiple
Wordcount jobs with the same size input data but different data
locality. It demonstrates that job completion times decreases
as the input data locality increases.

Providing job fairness. The second property of the heuris-
tic function is designed to promote fair share of resources
among competing jobs in a shared Hadoop cluster. Without
this property, it is possible that only certain type of jobs make
more progress than others. For example, since short jobs may
finish more tasks within a control interval than long jobs, they
get more chances to update the pheromone values of their
task assignment paths, and give negative pheromone update to
competing jobs. As a result, the task assignment policy may
unfairly lead to starvation of longer jobs.

Heuristic function. The heuristic function is given by:

ηt+1(j) =

⎧⎨
⎩
∞ if task has local data,

1

1−S
j
min

−S
j
occ

Spool

Otherwise. (7)

where Sj
min is the minimum share of the jth job in terms

of the number of Hadoop slots. Sj
occ is the number of slots

occupied by the jth job. Spool is the minimum share of the
Hadoop user who is running the job. Similar to the Hadoop
Fair Scheduler, Σj∈JS

j
min = Spool holds true. For the sake

of clarity, we consider a single user system. Hence, Spool is
equal to the total number of slots available in the cluster. E-
Ant incorporates the above heuristic information into its task
assignment policy by updating Equation 3. The probability that
E-Ant will assign a task of the jth job to the mth machine is
now given by:

Pt+1(j,m) =
τt(j,m)[ηt+1(j)]

β

Σm′∈Mτt(j,m′)
. (8)

where β is a control knob that determines the relative influence
of heuristic and pheromone information on the task assignment
decisions.

The first term in Equation 7 indicates that the task as-
signment policy should give the highest priority to data local
tasks if available. The second term indicates the degree of
unfairness experienced by the jth job. The higher the degreee
of unfairness, the greater the need to schedule the tasks
belonging to this job. From Equations 7 and 8, we can
conclude the following: If Smin = Socc, the value of ηt+1(j)
will be one. In other words, the jth job already has its fair
share of resources. Hence, the fairness factor will not have any
impact on the probability of assigning the jth job to the mth

machine. If Socc < Smin, the value of ηt+1(j) will be greater
than one. Furthermore, the larger the difference between Socc

and Smin, the greater the value of ηt+1(j). It means that the
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Fig. 7. Impact of system noise.

job is experiencing unfairness, and hence the probability of
assigning the jth job to the mth machine will be increased. If
Socc > Smin, the value of ηt+1(j) will be a positive number
smaller than one. The larger the difference, the smaller the
value of ηt+1(j). It means that the job is using more than its
fair share of resources, and hence the probability of assigning
the jth job to the mth machine will be reduced.

D. Exchange Strategies for Robustness Against System Noise

We observe that the presence of system noise in a Hadoop
cluster poses a challenge in accurately evaluating the energy
efficiency of a particular type of machine for certain jobs. We
define system noise as the transient and anomalous behavior
of certain tasks of a given job, which may be attributed
to multiple factors such as data skew, network congestion,
etc. Such system noise manifests itself as fluctuation in CPU
utilization, and straggling tasks that run slower than their
expected speed on a particular machine type. As a result,
the energy usage estimated by the model in Equation 2 may
not reflect the true energy efficiency of a machine. Figure 7
shows the impact of system noise on the estimated energy
consumption of individual tasks while running a wordcount
job on a T420 server.

We address this challenge by leveraging the presence of
homogeneous subset of machines and jobs in a heterogeneous
Hadoop cluster. Since homogeneous machines are supposed to
deliver similar energy efficiency for the tasks of the same or
similar jobs, the evaluation of energy efficiency will be more
accurate if we consider the energy usage estimates of these
groups together. E-Ant utilizes two levels of information ex-
change, i.e., machine-level exchange and job-level exchange.

Machine-level exchange. E-Ant divides the heterogeneous
Hadoop cluster into a number of homogeneous sub-clusters
based on their hardware configurations. The hardware infor-
mation is collected by the JobTracker on the master node
using the heartbeat signal from the TaskTrackers. The
pheromone update value used in Equation 4 is now defined
as Δτnt (j,m) = Avgm′∈Mh

Δτt(j,m
′) where Mh is a set

of homogeneous machines. Hence, the goodness of a task
assignment path for a particular job is determined by the
average available experiences of the completed tasks that
visited those homogeneous machines in the previous interval.

Job-level exchange. E-Ant divides the heterogeneous
workload-mix into a number of homogeneous jobs based on
their resource demands. The job-level information exchange is
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Fig. 8. Comparing E-Ant with Fair Scheduler and Tarazu.

TABLE III
MSD WORKLOAD CHARACTERISTICS.

Size % Jobs Input size # Maps # Reduces

Small 40% 1-100GB 16-1600 4-128
Medium 20% 0.1-1TB 1600-16000 128-256

Large 10% 1-10TB 16000-160000 256-1024

achieved by using an average evaluation function to evaluate
the pheromones of homogeneous jobs. It aims to share the ex-
periences from all homogeneous jobs executed on the homoge-
neous hosting machines. More specifically, the pheromone up-
date value is defined as Δτnt (j,m) = Avgj

′∈Jh

m′∈Mh
Δτnt (j

′,m′),
where Jh is a set of homogeneous jobs.

V. IMPLEMENTATION

A. Hadoop Modification

We implemented E-Ant by modifying the Java classes
JobTracker, TaskTracker and TaskReport based on
Hadoop version 1.2.1. We added a new interface taskEner,
which is used to estimate the energy consumption of individual
tasks while comparing them hosted in different slave nodes.
Each record of task-level energy consumption is tagged with
its corresponding AttemptTaskID. Additionally, we added
another new interface Optimizer to implement the ACO
optimization. During job execution, we created a method
taskAnalyzer to collect the status of each completed
task by using TaskCounter and TaskReport. The CPU
utilizations and the execution times of tasks are reported by
TaskTrackers via heartbeat connection periodically.

B. Experiment Setup

We evaluate E-Ant on a physical cluster composed of 1
Atom (4-core CPUs, 8 GB RAM and 1 TB hard disk), 3 T110
(8-core CPUs, 16 GB RAM and 1 TB hard disk), 2 T420
(24-core CPUs, 32 GB RAM and 1 TB hard disk), 1 T320
(12-core CPUs, 24 GB RAM and 1 TB hard disk), 1 T620
(24-core CPUs, 16 GB RAM and 1 TB hard disk), and 8 Dell
desktops (8-core CPUs, 16 GB RAM and 1 TB hard disk).
The master node is hosted on one Dell desktop in the cluster.
The servers are connected with Gigabit Ethernet. Each slave
node is configured with four map slots and two reduce slots.
The block size of HDFS is set to 64MB in the experiment. E-
Ant is based on the version 1.2.1 of Hadoop implementation.

We measure the energy consumption of each machine directly
using the WattsUP Pro power meter [2]. We implement the
proposed adaptive assignment algorithm on the Master node
of the cluster. It dynamically generates new scheme to adjust
the task assignment in each control interval (i.e., 5 minutes).
The selection of the control interval is a trade-off between the
solution searching speed and average task execution time.

C. Real-world Workloads

To understand the effectiveness of E-Ant in a production en-
vironment, we used a synthetic workload, “MicroSoft-Derived
(MSD)”, which models the production workload of 174,000
jobs in Microsoft datacenter in a single month in 2011 [5].
MSD mimics the distribution characteristics of the production
jobs by running Wordcount, Terasort and Grep applications
from the PUMA benchmark [1] with various input data sizes.
It is a scaled-down version of the workload studied in [5]
since our cluster is significantly smaller. We scale down the
workload in two ways: we reduce the overall number of jobs to
87, and eliminate the largest 10% of jobs and the smallest 20%
of jobs. We set the Hadoop configurations (See Appendix B)
based on the rules recommended by Cloudera, a provider of
popular Apache Hadoop distribution [9].

VI. EVALUATION

We compare the performance of E-Ant with two competi-
tors: Fair Scheduler, a representative approach that is used to
share a Hadoop cluster among multiple jobs, and Tarazu [4], a
communication-aware load balancing scheduler for improving
heterogeneous MapReduce performance. First, we evaluate
the effectiveness of E-Ant in improving the energy efficiency
of a heterogeneous Hadoop cluster. Second, we analyze the
adaptiveness of E-Ant’s task assignment policy. Third, we
evaluate the effectiveness of the exchange strategy. Finally, we
present the sensitivity analysis of E-Ant’s design parameters.

A. Effectiveness of E-Ant

Reducing energy consumption. Figure 8(a) shows the
impact of Fair Scheduler, Tarazu, and E-Ant on the overall
energy consumptions of six different machine types used in our
experiments. The results demonstrate that E-Ant achieves sig-
nificant energy savings on the eight Desktop machines, while
using slightly more energy on the other types of machines.
E-Ant improves the overall energy consumption of MSD
workload by 17% and 12% compared with Fair Scheduler
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Fig. 9. Task assignment adaptiveness by workloads and tasks.

and Tarazu, respectively. This is due to the fact that E-Ant
distributes the Hadoop tasks in heterogeneity-aware manner
to improve the overall energy efficiency. On the other hand,
Fair Scheduler is heterogeneity-oblivious and Tarazu aims to
improve application performance rather than energy efficiency.
The results also reveal that Tarazu is more energy efficient than
Fair Scheduler since Tarazu could reduce job execution times
by communication-aware load balancing.

Impact on CPU utilization. Figure 8(b) shows the CPU
utilizations of the various machine types that resulted from
different scheduling approaches. It illustrates that T420 server
has only 20% utilization by using Fair Scheduler and Tarazu
while it has 40% utilization by using A-Ant. In contrast, E-Ant
achieves a lower utilization on the desktop compared to Fair
Scheduler and Tarazu do. This is due to E-Ant’s heterogeneity-
aware task assignment, which favors T420 server over the
desktop in order to improve the overall energy efficiency. As
discussed in Section II, the Xeon-based server is more energy
efficient for heavy workload while the Core-based desktop is
more efficient for light workload.

Impact on job completion time. Figure 8(c) compares the
impact of Fair Scheduler, Tarazu and E-Ant, respectively on
Hadoop job performance. Here, the job completion times are
normalized with respect to the job completion time achieved
by the Fair Scheduler. The result shows that both Tarazu
and E-Ant improves the job completion time compared to
Fair Scheduler. Tarazu achieves performance gain by avoid-
ing bursty network traffic during map computation. On the
other hand, E-Ant improves the job performance due to its
heterogeneity-aware task assignment. It favors those machines
that are able to finish more tasks within a control interval, since
the pheromone values associated with their assignment paths
are updated more frequently. In a few cases, the performance
improvement by E-ANT is slightly less than that of Tarazu.
This is due to the fact that E-Ant may allow some slow
task executions, in order to achieve significant energy savings.
Overall, E-Ant achieves consistently better energy efficiency
than Fair Scheduler and Tarazu do.

B. Adaptive Task Assignment

We now demonstrate how E-Ant’s task assignment policy
adapts to different Hadoop workloads and tasks types.

Adaptiveness by workload type. Figure 9(a) shows E-
Ant’s task assignment distribution on three representative
machines types for different workloads. The results show that
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Fig. 11. Impact of heterogeneity on the searching speed of E-Ant.

T420 server hosts more tasks of the Wordcount job while the
desktop and Atom host more tasks of the Grep and Terasort
jobs. This is due to the fact that compute-optimized machines
such as T420 are more energy-efficient for CPU bound work-
loads (e.g., Wordcount), and the less powerful machines such
as desktop and Atom are relatively more energy-efficient for
I/O bound workloads (e.g., Grep and Terasort).

Adaptiveness by task type. Figure 9(b) shows E-Ant’s
task assignment distribution on three representative machines
types for different task types. The results show that T420
server hosts more map tasks, while the desktop and Atom
host more reduce tasks. This is due to the fact that compute-
optimized machines (e.g., T420) are more energy-efficient for
CPU intensive tasks, and the less powerful machines (e.g.,
desktop and Atom) are relatively more energy-efficient for I/O
intensive tasks. The map tasks happen to be relatively more
CPU intensive than the reduce tasks for our workload mix.

C. Effectiveness of Exchange Strategy

We evaluate the impact of information exchange strategy
(described in Section IV-D) on the amount of energy savings,
and the search speed of E-Ant.

Impact on Energy Savings. As shown in Figure 10, we
measure the energy savings achieved by E-Ant with different
information exchange strategies over the default heterogeneity-
agnostic Hadoop. The measurements are done at different
times intervals as the jobs progress towards completion. As
time progresses, more and more tasks are assigned to the
heterogeneous machines. As a result, the energy savings
achieved by E-Ant increases with time. The result shows that
the machine-level exchange and job-level exchange strategies
improve the energy savings by 7% and 10% respectively
as compared with the no-exchange strategy. Figure 10 also
illustrates that applying the two strategies together improves
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Fig. 12. Sensitivity analysis of E-Ant design parameters.

the energy savings by 15% compared with applying the
no-exchange strategy. The improvement in energy savings
compared to the no-exchange strategy is due to the fact that
the exchange strategy enables E-Ant to make more accurate
judgment about the energy efficiency of the machines in the
presence of system noise.

Impact on Search Speed. The search speed of E-Ant is
evaluated by measuring the time required to find a stable task
assignment solution for a job running on the Hadoop cluster.
We define a stable solution as the task assignment that has
more than 80% tasks revisit the same machines compared
with the assignment in the previous interval [6]. A slow
search speed will reduce the benefits of an energy-efficient
task assignment, especially for small jobs. This is due to the
fact that a small job may complete before E-Ant can find out
energy-efficient hosting machines for this job. Our experiments
reveal that the search speed of E-Ant is affected by the number
of homogeneous machines and the number of homogeneous
jobs available for applying the exchange strategy.

Figures 11(a), and 11(b) show that the convergence times
of E-Ant decreases as the number of homogeneous machines
and jobs used in the Hadoop cluster increases. This is due to
the fact that with the increase in the homogeneity of machines
and jobs, E-Ant’s exchange strategy becomes more effective
in making the task assignment policy robust to system noises.

D. Sensitivity Analysis of E-Ant design parameters

Weighting parameter impact. We measure the energy
saving achieved by E-Ant over the default heterogeneity-
agnostic Hadoop, and evaluate its job fairness for various
values of the weighting parameter β in Equation 8. In order to
measure job fairness, we compare the performance slowdown
of the various Hadoop jobs. Slowdown is the normalized
execution time, which is defined as the ratio between a jobs
actual execution time and its standalone execution time (the
time when a job is running in the system alone) [18]. In a fair
system, all jobs are expected to experience similar slowdown.
Hence, we define job fairness as the inverse of the variance
in performance slowdown of the submitted jobs. As shown in
Figure 12(a), job fairness increases with the increasing value
of β. This is due to the fact that E-Ant’s task assignment
policy gives fairness a higher priority than energy saving as
the value of β increases. This also explains the decrease in
energy saving when the value of β increases from 0.1 to 0.4.

However, there is an increase in energy saving when the
value of β increases from zero to 0.1. The reason is that when
the value of β is zero, E-Ant does not consider data locality in
making task assignment decisions. As a result, a large number
of non-local tasks may increase the job execution time, which
in turn leads to more energy usage. On the other hand, when
β has a nonzero value E-Ant gives the highest priority to
data locality whenever local task execution is possible. Hence,
there is an initial increase in energy savings as shown in
Figure 12(a). However, as the value of β gets larger, the impact
of favoring job fairness over energy saving becomes more
prominent. Hence, the energy saving decreases.

Overheads and Control Interval Selection. E-Ant relies
on Hadoop’s daemons processes such as JobTracker and
TaskTrackers to monitor task execution and perform adap-
tive task assignment. Hence, there is no overhead of launching
any new process for E-Ant. It collects the energy consumption
information of individual tasks from TaskTrackers, which
is along with TaskReport by Hadoop default RPC con-
nections. Furthermore, the self-adaptive ACO algorithm itself
takes approximately 120 ms to complete. This overhead is
negligible compared to E-Ant’s control interval of 5 minutes.

We now analyze the impact of control interval selection on
the energy saving achieved by E-Ant over default Hadoop.
As shown in Figure 12(b), the energy saving first increases
with increasing value of the control interval. However, the
energy saving decreases for control intervals that are greater
than 5 minutes. This is due to the fact that when the control
interval is too short, E-Ant’s adaptive task assigner does not
have enough data samples to make an accurate judgment
about the energy efficiency of heterogeneous machines. Hence,
increasing the control interval has a positive impact on energy
saving. However, when the control interval is too long, task
assignments become less frequent which in turn reduces the
possibility of energy saving.

VII. RELATED WORK

Task scheduling: Many prior studies have shown that
MapReduce performance can be significantly improved by
various scheduling techniques [8], [17], [19]. The default
FIFO Scheduler in Hadoop implementation may not work
well since a long job can exclusively take the computing
resource on the cluster, and cause large delays for other
jobs. Thus, many schedulers, e.g., Capacity Scheduler, Fair
Scheduler, can share resources among multiple jobs. Wolf
et al. described FLEX [19], a flexible and intelligent allo-
cation scheme for MapReduce workloads. Cho et al. designed
Natjam [8], a system that provides support for prioritized
MapReduce scheduling of the jobs with various deadlines. Our
work differs from these efforts in that we investigate adaptive
task assignment techniques to improve energy efficiency of
heterogeneous Hadoop clusters.

Heterogeneous cluster: As heterogeneous hardware is
prevalent in production environments, studies [4], [11], [21],
[24] aim to improve MapReduce performance in hetero-
geneous clusters. Ahmad et al. [4] identified key rea-
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sons for MapReduce poor performance on heterogeneous
clusters. Accordingly, they proposed an optimization based
approach, Tarazu, to improve MapReuce performance by
communication-aware load balancing. Zaharia et al. [21] de-
signed a robust MapReduce scheduling algorithm, LATE, to
improve the completion time of MapReuce jobs in a het-
erogeneous environment. Although these approaches achieved
performance improvement from different perspectives, they
paid little attention to optimizing energy efficiency for het-
erogeneous Hadoop clusters.

Energy efficiency: Recently, there are growing interests on
energy-efficient MapReduce design with various techniques,
e.g., cluster consolidating [7], delaying batch jobs [13] and
load distribution [10]. Leverich et al. proposed covering subset
scheme keeps one replica of every block within a small subset
of machines called the covering subset. This subset remains
fully powered to preserve data availability while the rest is
powered down. Lang et al. proposed AIS [12], an alter-
native energy management framework to reduce the energy
consumption of Hadoop cluster. It dynamically controls the
available nodes in the cluster to improve the system resource
utilization. Chen et al. proposed BEEMR [7], an energy
efficient MapReduce workload manager. The key insight of
BEEMR is that the interactive jobs can be served by a small
pool of dedicated machines with their associated storage, while
the less time-sensitive jobs can run in a batch fashion on the
rest of the cluster. Those studies achieves energy efficiency by
intrusive solutions, i.e., modify underlying HDFS file systems.
Our work differs from these previous efforts in that we aim to
design a less intrusive and more agile approach for improving
the energy efficiency in Hadoop clusters through adaptive task
assignment.

VIII. CONCLUSION

In this paper, we observe that the heterogeneity of both
machine and workload in Hadoop clusters causes complex and
time-varying energy consumption characteristics at run-time
leading poor energy efficiency. We present a heterogeneity-
aware and adaptive task assignment approach, E-Ant, that
improves the the energy efficiency of a heterogeneous Hadoop
cluster without a priori knowledge of the workload properties.
Furthermore, we address the challenges imposed by system
noise, and job fairness requirements through our rigorous
system design. Our testbed implementation and extensive
evaluation demonstrate the effectiveness of E-Ant. The results
show that E-Ant improves the overall energy savings for a
synthetic workload from Microsoft by 17% and 12% compared
to Fair Scheduler and Tarazu respectively. In future, we will
explore the integration of E-Ant with cluster resource provi-
sioning and server consolidation techniques to further improve
the energy efficiency of heterogeneous Hadoop clusters.
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