
VCSR: Mutable CSR Graph Format Using

Vertex-Centric Packed Memory Array

Abdullah Al Raqibul Islam1, Dong Dai1, and Dazhao Cheng2

1Computer Science Department, University of North Carolina at Charlotte, {aislam6, ddai}@uncc.edu
2School of Computer Science, Wuhan University, Wuhan, China, {dcheng@whu.edu.cn}

Abstract—The compressed sparse row (CSR) is a widely used
graph storage format due to its compact memory layout and
high performance on graph analytic tasks. However, the compact
design also limits itself from supporting many graph applications
that operate on dynamic or temporal graphs as updates on
these graph will need to rebuild the entire CSR structure,
leading to high costs. Extending CSR to support efficient graph
mutations without losing its high performance on graph analysis
then becomes critical to these applications. Existing mutable
CSR extensions leverage packed memory array (PMA) to store
edge list to enable graph mutations. But, such a naive way has
fundamental limitations in handling imbalanced graphs, which
many real-world graphs belong to. To address such issues, we
propose VCSR, a new mutable CSR storage format that leverages
the packed memory array (PMA) via a new vertex-centric strategy
to efficiently support temporal graphs. Our evaluation results
show that compared with the state-of-the-art mutable CSR
extensions, VCSR can achieve 1.41x-3.81x better performance in
graph insertions and 1.22x-2.05x better performance in running
typical graph analytic algorithms. In addition, VCSR can achieve
similar performance as the original immutable CSR in running
graph analytic tasks, making it a promising storage format for
temporal graphs.

I. INTRODUCTION

Sparse graphs are widely used in many real-world appli-

cations, such as social networks, financial analysis, biological

science, and even storage systems [1, 2, 3, 4, 5]. To efficiently

store these graphs in memory, researchers have proposed

various in-memory graph storage formats, such as edge list

(EL), adjacency list (AL), ellpack (ELL) [6], diagonal format

(DIA) [7], and compressed sparse row (CSR) [8], etc. Among

these options, compressed sparse row or CSR is often the first

choice in practice for its compact memory layout and high

performance on graph analytic tasks [9]. Specifically, CSR

stores graph by packing edges into an edge array, where edges

of the same vertex will be grouped together. The vertices in

CSR are sequentially stored in a separate vertex array. Each

vertex stores a number indicating the start index of its edges in

the edge array. Such a compact design gains high memory and

cache usage efficiency, hence offering extreme performance to

graph analytic tasks.

The CSR storage format, however, can not be easily mutated

once built. Inserting a new edge or vertex will trigger the

edge or vertex arrays to be rebuilt, which is extremely time-

consuming for large graphs. This limits its usage for dynamic

or temporal graphs, where new edges and vertices are con-

tinuously inserted. In fact, dynamic graphs are increasingly

seen in today’s applications. For example, in social networks,

new users and connections are added constantly [10]; in

sensor networks where devices and their communications are

modeled as graph vertices and edges, new communications

and devices are continuously updated [11]. If using CSR in

these scenarios, we have to wait until a new CSR is rebuilt

before running the graph analysis, leading to long latency or

outdated results.

Several recent studies, PCSR [12] and GPMA [13], ex-

tended CSR to support mutations by using the Packed Memory

Array (PMA) to store the CSR edge list. Here, PMA is an

array data structure that supports dynamic insertions [14]. It

partitions the entire array into fixed-size sections, each of

which contains some empty space (gaps) reserved for future

insertions. If one section gets full, nearby sections will evenly

redistribute their gaps together (an action called re-balancing).

In this way, new insertions can be done locally within nearby

sections instead of shifting the whole array. The amortized

complexity for inserting into N elements array is much smaller

(O(log 2N)) than the normal array (O(N)). Leveraging PMA,

mutable CSR essentially stores its edges in different sections.

Each contains gaps for future edge insertions. More details

about its implementation can be seen in Section II.

Although existing studies have shown the feasibility of im-

plementing mutable CSR using packed memory array (PMA),

their naive way of directly storing graph edges as array

elements in packed memory array is problematic to handle

real-world graphs. Specifically, PMA is designed based on the

assumption that array insertions are distributed evenly across

the whole array. However, many real-world graphs follow the

power-law distribution, which has a small number of extremely

large vertices and a large number of small vertices [15]. This

imbalanced nature of the graph is relevant and impacts how the

graph grows and how new edges will be inserted. For instance,

some vertices may receive more neighboring edge insertions.

Without proper handling, these edge insertions may hit a hot

area of PMA, leading to more costly re-balancing operations

and worse performance.

Through checking how imbalanced graphs grow and how

their edges are inserted in real-world temporal graphs, we

actually observed that the current degree of a vertex is a strong

indicator on the number of its future edge insertions. Detailed

experimental results about such an observation are reported

in Section III. Based on it, we propose a new approach to

71

2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-6654-9956-9/22/$31.00 ©2022 IEEE
DOI 10.1109/CCGrid54584.2022.00016

20
22

 2
2n

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Cl
us

te
r,

Cl
ou

d
an

d
In

te
rn

et
 C

om
pu

tin
g

(C
CG

rid
) |

 9
78

-1
-6

65
4-

99
56

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CC

GR
ID

54
58

4.
20

22
.0

00
16

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

take the imbalanced graph structures into consideration. The

key idea is to leverage the current vertex degree information,

which is already available in CSR vertex array, as the main

indicator for gap reservation during maintaining the PMA data

structure. Based on the current degree, we will proportionally

redistribute the gaps among vertices. The benefits are twofold.

First, vertices and sections with more degrees will obtain more

gaps, and hence are able to tolerate more future insertions

without shifting nearby vertices, leading to better performance

in graph insertions. Second, maintaining a smaller gap for low-

degree vertex also improves the read performance because the

cache can be better utilized.

To efficiently obtain vertex degree information and leverage

it in PMA, we introduce VCSR, a new vertex-centric packed

memory array strategy to build mutable CSR1. Specifically,

VCSR partitions the PMA edge array into multiple sections

based on a fixed number of vertices in each section instead of

a fixed number of edges, which is widely used in traditional

PMA-based CSR extensions. More details can be seen in

Section IV. In this way, all the edges of the same vertex

will always be in the same section and the gaps can be

assigned in a per-vertex way. The ‘vertex-centric’ strategy

preserves the degree information in sections, so that we can

easily leverage it. We conducted extensive experiments to

demonstrate the performance advantages of VCSR. The results

show that VCSR achieves up to 3.81x better performance on

edge insertions and 2.05x better performance on graph analytic

tasks comparing with the state-of-the-art PMA-based mutable

CSR extensions, making it a promising storage format for

temporal graphs.

The remainder of this paper is organized as follows: In

§II we discuss several typical graph storage formats and their

fits to temporal graphs. We introduce the concept of Packed

Memory Array and the existing PMA-based CSR extension.

In §III, we show the motivations of VCSR, i.e., the strong

correlation between the degree of a vertex and its future edge

insertions. We also discuss the limitation of degree information

and how VCSR addresses that. In §IV we present VCSR

and its key components in details. We present the extensive

experimental results in §V. We compare with related work in

§VI, conclude this paper and discuss the future work in §VII.

II. BACKGROUND AND CHALLENGES

A. Graph Storage Formats and Dynamic Graphs

There are an extensive number of graph storage formats

in the literature. Fig. 1 shows an example graph and three

typical storage formats: edge list (EL), adjacency list (AL),

and Compressed Sparse Row (CSR).

The edge list (EL) is essentially a sequence of edge collec-

tions. New edges can be easily appended at the end of the list.

It achieves the best performance if the applications only scan

the whole edge list for analysis [16]. But, it is severely limited

on vertex-based operations, such as single-source breadth-first

search (BFS), as locating all edges takes time.

1Source available at https://github.com/DIR-LAB/VCSR

Fig. 1: Several typical graph storage formats.

The adjacency list (AL) and its variations (e.g., blocked

adjacency list [17]) manage the neighbors of each vertex

in separate per-vertex linked lists. Edge insertions are easily

supported as a new edge can be appended to the corresponding

edge list. Vertex-based graph analysis is also easy to imple-

ment [18, 11]. The major issue of the adjacency list is its

high memory overheads due to the pointers and poor cache

performance due to pointer chasing.

The compressed sparse row (CSR) stores all edges in an

edge array similar to EL. But It further groups the edges

from the same vertex together in the edge array and uses a

vertex array to record the starting index of each vertex. In this

way, CSR supports both efficient per-vertex queries and fast

edge iterations. It presents good cache behaviors because most

of the vertex and edge accesses are sequential and compact.

However, CSR has a key shortage: it can not support graph

updates. Inserting an edge will need to rebuild the edge array,

which is extremely time-consuming for huge graphs. Recent

studies tried to extend it using packed memory array.

B. PMA and Existing PMA-based CSR

The Packed Memory Array (PMA) [19] is essentially a

sorted array where elements are interleaved with empty slots or

gaps to accommodate fast updates, as Fig. 2 shows. Here, the

blank cells indicate the empty space or gaps. These gaps will

provide extra room for future insertions without the need to

move long sequences of existing elements. PMA dynamically

maintains the placement of the gaps during insertions. It

will re-balance the array and re-distribute the gaps whenever

sections of the array become too sparse or too dense.

PMA utilizes a binary tree structure to self-balance the gaps.

Given an array of N elements, PMA partitions the whole

memory space into fixed-size sections, and each has O(logN)
elements. There will be O(N/ logN) sections. PMA builds a

binary tree structure by considering these sections as the leaf

nodes of the tree. Each internal node of the tree indicates the

whole range of its children. The tree structure is shown in

Fig. 2. The height of the tree is then O(log (N/ logN)). For

any section located at height i (leaf height is 0), PMA designs a

way to assign the lower and upper bound density thresholds for

the section as ρi and τi. Once an insertion/deletion causes the

density of a section to fall out of the range defined by (ρi, τi),
PMA tries to adjust the density by re-allocating all elements

stored in the section’s neighbors (by checking its parent). The

adjustment process is invoked recursively towards the tree root

and will only be terminated if all sections’ densities fall back

into the range defined by PMA’s density thresholds.

72

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

1 6 9 12 11 12 15 19

1 6 9 12 11 12 15 14 19

1 6 9 12 11 12 14 15 19

03 47 121503 47 1215

07 815

015

8

811

Fig. 2: PMA data structure and one insertion example.

Fig. 2 shows an example of PMA structure and its inser-

tion procedure. The total size of the array is 16 ([0, 15]).

Each section then contains log (16) = 4 slots. There will

be 16/4 = 4 sections. These sections are organized as a

binary tree with height log(16/ log (16)) = 2. Each tree node

manages a range of sections identified as an interval (starting

and ending position in the array) labeled in the tree node. All

values stored in PMA are displayed in the array. For each level

i, we show its (ρi, τi) parameters in bold, such as [0.25, 0.9]

for the leaf nodes. The density ratio must be between these

two parameters.

To insert an element, i.e., 14, into PMA, we first look for

its position in the array via binary search. We locate it should

be put in-between 12 and 15. Since there is no space for it, we

first place it at the end of the section and will reorder them

within the section later. However, the insertion itself causes

the density of the section to become 1.0, which exceeds the

threshold 0.9 and triggers a re-balance. Then, PMA finds the

nearest sections that can accommodate the insertion without

violating the thresholds. In this case, it will recursively check

whether such insertion will cause its parent (i.e., [8, 15]) to

exceed its threshold along the tree. Once find it, the gaps in

the parent range will be re-balanced. For example, elements

15 and 19 in Fig. 2 will be put into the sibling section.

0 1 2 3 4 5

1 3 0 3 4 5 5 0 1 1 1 2

0

1

2

3

4
5

Fig. 3: PMA-based CSR extension, PCSR [12]

Based on the PMA data structure, the PMA-based CSR

extensions (e.g., PCSR) are straightforward: directly use PMA

to store the CSR edge array. We show how it works in

Fig. 3. Here the vertex array is kept the same as in the

original CSR format, but the edge array becomes a PMA array,

which is partitioned into fixed-size sections. Each section has

O(log |E′|) edges. Here |E′| estimates the total number of

edges. In this particular example, each section contains four

slots. The empty boxes indicate the gaps where future edges

can be stored. As we can see, the edges of vertex v1 span

across two sections. To insert a new edge (vi, vj), we can use

source vertex (vi) and the vertex array to locate the starting

index in the edge array and then store the edge at the end of

its neighboring edges. PMA will automatically re-balance the

gaps while new edges are continuously inserted.

C. Issues of PCSR

Although PCSR is able to extend CSR to support graph

mutations, its naive way of simply treating graph edges as

array elements is indeed sub-optimal. There are mainly two

reasons. First, many real-world graphs follow the power-law

distribution and have an uneven graph structure. This may lead

to imbalanced graph insertions on certain ranges of the edge

array. But PCSR reserves the same number of empty spaces

or gaps in each section, which may trigger more frequent re-

balancing in the hot areas and hence is more time-consuming.

Second, in PCSR, as each section has a fixed number of edges,

the high-degree vertex may have edges spanning multiple

sections. Depending on how the edges from the same vertex

would be sorted, some of these inner sections may never

receive edge insertion but still reserve empty space, waiting

for the gaps to be filled. Also, because edges of a vertex can

span across multiple sections, its vertex degree information

can not be leveraged to re-distribute the gaps for a section.

III. KEY OBSERVATIONS

In this study, we propose to leverage vertex degree infor-

mation to adaptively distribute the gaps to address the issues

of PCSR. Such a strategy is based on one key observation: the

current degree of a vertex is a strong indicator of the number

of its future edge insertions in real-world temporal graphs. In

this section, we show detailed experimental results about it.

Intuitively, a real-world temporal power-law graph evolves

while maintaining its power-law property. For instance, the

Twitter network structure would still be exhibiting a power-

law last year, last week, and today. Such a property suggests

the graphs grow in certain patterns. To show the pattern, we

picked four real-world temporal graphs (sx-stackoverflow [20],

enron [21], sx-mathoverflow [20] and fb-wall [22]) from the

SNAP graph dataset [23] and analyzed how they grow. We

also picked a static power-law graph, i.e., com-Amazon from

SNAP and shuffled its edges as the edge insertion order to

analyze its growth.

To show how vertices with different degrees grow, we first

inserted the first X% of the graph as the base graph and

recorded the degree of every vertex in the base graph, dbase(v).
Then, we inserted the rest of the graph and counted how many

new edges enew(v) were inserted for each vertex v. This will

record the relationship between the current degree of a vertex

and the number of its future edge insertions. Since there may

be multiple vertices having the same degree in the base graph,

we aggregated them together and averaged their enew(v) as the

expectation of new edge insertions for vertices with the same

base vertex degree. Note that if a vertex never shows in the

base graph, its base degree will be 0. The later edge insertions

to it will still be counted and contribute the “degree 0” bucket.

We tested X from 10% to 50% to examine the stability of the

observation. Due to the space limit, we plot the results of 10%

and 30% in Fig. 4.

73

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

10
1

10
3

Degree (LOG)

0

2

E
xp
ec
te
d
In
se
rt
io
ns ×10

4

10
0

10
1

10
2

Degree (LOG)

0

5

×10
2

10
0

10
1

10
2

Degree (LOG)

0

1

×10
3

10
0

10
1

Degree (LOG)

0.0

0.5

1.0

×10
2

10
0

10
1

10
2

Degree (LOG)

0

1

2

×10
3

(a) 10% pre-initialization

10
1

10
3

Degree (LOG)

0

1

2

E
xp
ec
te
d
In
se
rt
io
ns ×10

4

10
1

10
3

Degree (LOG)

0

5

×10
2

10
1

10
3

Degree (LOG)

0.0

0.5

1.0

×10
3

10
0

10
1

10
2

Degree (LOG)

0.0

0.5

1.0

×10
2

10
1

10
3

Degree (LOG)

0

1

2
×10

3

(b) 30% pre-initialization

Fig. 4: The relationship between vertex’ base degree in both the 10% and 30% pre-initialization cases and their expected new edge insertions.
x-axis is the degree; y-axis is the expected insertions; both are in log-scale

The results in Fig. 4 clearly show a strong correlation

between the current degree of a vertex and the number of

its future edge insertions. More importantly, such a property

preserves across different real-world temporal graphs and the

randomly shuffled static graph. The value of X% has barely

impacts on the trend as well. For randomly shuffled graph

com-Amazon, the trend is extremely regular. This is expected

as randomly shuffling all the edges makes insertions to a

vertex scattered evenly. But for real-world naturally growing

graphs, the trend is still clear as seen in the figures. Such an

observation serves as the foundation of VCSR design.

A. Limits of Degree Information

Even though Fig. 4 shows prevailing results across graphs,

we do understand that the degree information may not be this

useful in certain scenarios. For example, if users always insert

all the edges of each vertex in a batch and never add new

edges to it later, then the degree information could not indicate

any future insertion anymore. Previous research [24] suggests

that tracking a short history of recent insertions to adaptively

redistribute gaps will help handle such extreme workloads. We

implement such a feature in VCSR as an option for users to

enable.

Although it is not hard to add the ‘recent insertion history’

feature into VCSR to support such extreme workloads, we

strongly argue that such a feature should not be enabled by

default and should only be used when users explicitly know

their graph insertion workloads are extreme. The reason is,

tracking recent insertions introduces extra memory accesses

due to maintaining the counters for each insertion. These

amplified memory accesses diminish the benefits of a better

gap distribution (if there was any). To control the overheads,

we can only trace a limited number of insertions. For instance,

previous research tracks logN inserted locations (i.e., 30 for

1 billion elements) [24]. Such a limited number of tracked

locations can barely capture any accurate pattern or offer any

useful information better than vertex degree except in extreme

insertion patterns.

Build Time (s) Mem. Acc. (M) % of Adap.
Graph PCSR APT-CSR PCSR APT-CSR rebalance

Amazon 1.44 1.67 44.40 44.39 0.05
Stackoverflow 31.87 39.03 9219.67 9053.07 3.11

TABLE I: Comparison of PCSR and APT-CSR. Here, the Build
Time is showing the time to insert the whole graph (in seconds).
Mem. Acc. is showing the recorded memory accesses (in millions)

To demonstrate such, we revised the PCSR code base [25]

with the adaptive mechanisms (namely APT-CSR) by adding

workloads tracer and adaptive re-balancing and then compared

its performance with the original PCSR on 1) overall execution

time; 2) total memory accesses; 3) the percentage of adaptive

re-balancing. We show the results on real-world temporal

graph sx-stackoverflow and randomly shuffled static graph

com-Amazon. From Table I, we have several observations.

First, tracking history (APT-CSR) actually leads to worse

performance in graph building. This is due to the extra cost

of maintaining the workloads trackers. Second, we observe

that APT-CSR does introduce some adaptive re-balancing

leveraging the tracked history. However, the percentage is

extremely low (0.05% and 3.11%) compared with the total re-

balancing. This shows it does not capture the workload pattern

for such not-extreme workloads. These two key observations

motivate us to base VCSR on vertex degree information

instead of recent insertion history to better support mutable

CSR for real-world temporal graphs.

IV. VCSR DESIGN AND IMPLEMENTATION

Fig. 5 shows the structure of the VCSR storage format

generated from an example graph. Similar to CSR and PCSR

formats (shown in Fig. 3), VCSR includes vertex array and

74

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

edge array to store the graphs. We describe these components

below in more detail.

0 1 2 3 4 5

1 3 0 3 4 5 5 0 1 1 1 2

0 1 2 3 4 5

0

1

2

3

4
5

Fig. 5: VCSR storage format.

First, the vertex array is exactly the same as its CSR

counterpart. It stores all the vertices sequentially based on

their Ids. Each vertex contains two key information items: the

degree of a vertex and the starting index of its edge in the

edge array. In Fig. 5, we demonstrate the starting index of

each vertex as arrows. The initial size of the vertex array is

configurable via MAX_VERTEX parameter. If the number of

vertices reaches the limits, we will double the vertex array

space and copy data to the new vertex array. Such a resizing

operation could be time-consuming. But, we expect it will not

often happen as most graph mutations are on the edges. In

the future, we plan to investigate splitting the vertex array

into multiple segments to avoid this costly resize operation,

similar to [26].

Second, the edge array stores the graph edges. It is initially

small but grows as new edges are inserted. Each of the

edge array elements contains three key information items:

(i) the destination vertex id, (ii) graph property data such

as the weight of the edge, and (iii) additional versioning

metadata needed for multi-version and snapshot. Note that,

to support long-running iterative graph analytics on dynamic

graphs, VCSR supports multi-version and snapshot mecha-

nisms similar to those in [18, 11]. In VCSR, edges will have

monotonously increasing version numbers (a rolling over 32-

bit timestamp). The edges of a vertex are stored in order

based on their version numbers. Each analytic task will be

implicitly assigned a snapshot Id (based on task submission

time). Once the tasks start to run, any new data with higher

version numbers will be ignored to guarantee data consistency.

Similar to the edge array in PCSR (shown in Fig. 3),

the edge array in VCSR contains empty slots in-between

array elements for storing future edge insertions. However, in

VCSR, these empty slots will no longer be evenly distributed

among different sections in the array. Instead, VCSR partitions

the edge list by ensuring each section will store the edges of

the same number of vertices (O(log |V |)). Here |V | is the

total number of vertices. For example, in Fig. 5, each VCSR

section will store edges of O(log |6|) or two vertices. This

will lead to different-sized sections if counted based on edges.

For instance, in Fig. 5, because vertex v1 has more edges, its

section is bigger than others.

We name this new edge array partition strategy ‘vertex-

centric’ as it counts vertices instead of edges to partition the

edge array. Its benefits are two-fold. First, it guarantees edges

of the same vertex will always be stored in the same section.

This allows us to easily trace the vertex degree information of

each section to determine its appropriate empty space. Second,

it avoids the scenario where a high-degree vertex spans its edge

across multiple sections. This may happen in PCSR. When

it happens, the middle sections may never receive any edge

insertion due to increasing version numbers, but still need

to reserve empty slots, which are wasteful. We will describe

how the empty slots can be adaptively re-balanced in the next

section.

A. Graph Operations in VCSR

In this subsection, we introduce how various graph opera-

tions are executed in VCSR.

1) Initialization: The VCSR graph can be initialized from

scratch or using existing base graph data. It takes one pa-

rameter from users during the initialization: MAX_VERTEX.

Based on the maximal number of vertices, it allocates the

vertex array. It allocates the edge array with an estimated

size of edges, which could be very small initially. If there are

existing base graph data, we insert them and build the PMA-

tree on top of the edge array, similar to Fig. 2 shows. In this

regard, we calculate the capacity and number of actual edges

in each PMA-tree node and store this information for future

usage.

2) Edge Insertion/Deletion: Every edge comes in a tuple

of source vertex-id (src), destination vertex-id (dst), property

data (e.g., weight), and an implicit timestamp. Based on the

degree of the source vertex src, these edges will be inserted

in the edge array.

Algorithm 1 Insert an edge in the Edge Array

1: ⋄ Insert an edge from u to v with weight w.
2: insert location ← startu + degreeu
3: if insert location ≥ startu+1 then ⊲ not enough space
4: shift nearby sections to make space
5: end if
6: insert edge (u, v, w) at insert location

7: if density(sectionu) ≥ densitythres then
8: do rebalance(sectionu);
9: end if

Algorithm 1 shows the details of inserting an edge u → v
in VCSR. We will first locate where the new edge should be

inserted. In VCSR, we associate the current timestamp if not

provided with each edge insertion and store edges of the same

vertex sequentially based on their timestamp. So, the upcoming

location for any edge should be where its start index plus its

degree (startu + degreeu).

If that location is empty, we simply place the current

edge there (as shown in line 6). Otherwise, the location

will be overlapped with the starting index of the next vertex

(startu+1). Then, we will need to make space for it by moving

the edges of the neighboring vertices (in line 4). To do so,

we lookup in the logical tree to find an appropriate search

75

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

range with enough space. Then, we shift the neighboring edge-

lists one step forward or backward (depending on where we

get the gap) and insert the current edge in the newly created

space. As there are empty spaces reserved in each section,

such a shift should not move many edges. After inserting the

edge, we will check whether this insertion makes the current

section too dense (in line 7). If yes, we initiate a re-balance

(in line 8). The re-balance procedure is the key to maintaining

the adaptive number of gaps among sections. We will discuss

it in a later section.

Similar to other graph storage engines [11], edge deletions

in VCSR are done in a lazy way. Specifically, for deleted

edges, we will place a tombstone to it by changing its src field

to be an invalid negative number and return without reclaiming

the space. These marked edges will not be used in reading and

will be asynchronously removed by a maintaining thread.

3) Uneven Re-balancing: As described earlier, after every

edge insertion, we check whether the current section reaches

its density thresholds (ρi, τi). If so, we will search the logic

tree from leaf to root for a valid range of sections where

the density is still in their given density boundary. If we

cannot find any such section range before reaching the tree

root, we will resize (double) the whole VCSR edge list. If

we do find a range of sections that will still fall between

their density thresholds after the insertion, we calculate all the

available gaps in these sections and redistribute them among

all the sections. So far, everything is done similarly as the

original packed memory array or PCSR. However, instead

of distributing gaps evenly, we follow an uneven strategy to

redistribute the empty space.

Specifically, assume all the available gaps in these sections

are gapsavail. It is easy to calculate how many vertices are in

these sections and their degrees by checking the vertex array.

We add these degrees together to totaldegree. Then, we can

calculate the adaptive number of gaps per vertex as:

gapsv = degreev ∗
gapsavail
totaldegree

Based on this per-vertex gaps, we need to move all the edges

inside these sections to make sure there is correct number of

gaps for each vertex. We do such movement in an in-place

method, which reduces the memory usage and reduces the

total memory accesses during re-balancing.

The benefit of such adaptive re-balance is two-fold. First,

it leaves more gaps for the high-degree vertices, which often

indicate a higher chance of getting more insertions. Second,

placing smaller gaps after the low-degree vertices makes the

edge list sections of low-degree vertices more compact, which

increases the cache locality. We will show not only the write

performance but also the read performance improvements over

PCSR in our evaluation section.

V. EXPERIMENTAL RESULTS

In this section, to show the advantage of VCSR, we compare

it with other graph storage formats on real-world graphs using

different real-world temporal graphs and other synthetic graph

insertion patterns.

A. Evaluation Setup

Evaluation Platform. We conducted all the evaluations on

a Dell R740 rack server with two sockets. Each socket installs

the 2nd generation Intel Xeon Scalable Processor (Gold 6254

@ 3.10G) with 18 physical (36 virtual) cores and 6 DRAM

DIMMS with 32GB each. The machine is running Ubuntu

18.04 with a Linux kernel version 4.15.0.

Graph Algorithm Kernels. To show the performance of

different graph storage formats on running graph analytic

algorithms, we used the GAP Benchmark Suite (GAPBS) [31],

the state-of-the-art graph benchmark suite, to evaluate their

performance. GAPBS itself also provides an optimized CSR

implementation, which serves as our baseline to compare with.

In our evaluation, we used four representative graph kernels

from different domains implemented in the GAPBS: PageRank

(PR), Breadth-First Search (BFS), Connected Components

(CC), and Single-Source Shortest Paths (SSSP). Table. II gives

a brief overview of the algorithms.

Input Graphs. We used several real-world SNAP graphs

from various domains [23] in our evaluations. We used

weighted versions of all graphs for a fair comparison with the

publicly available version of PCSR [25], which has a required

field (e.g., value/weight) in its edge structure. We generated

weighted graphs from unweighted graphs by assigning random

integer weights in the range [0,256). Table. III lists the graphs

used in the evaluation and their key properties. Among these

selected graphs, the top six graphs are static graphs. When

using them, we will manually generate the insertion workloads

by reordering their edges. We created two different workloads

(‘Random’ and ‘Hammer’) to show the performance in differ-

ent cases. In addition to them, we also select four temporal

graphs (the bottom four) to show the performance of running

real-world temporal graphs.

System Implementation Details. In addition to the CSR

implementation provided in GAPBS, we further implemented

Adjacency-List (AL) and Blocked Adjacency-List (BAL) as

baselines to compare with VCSR. These two formats are

commonly used in many dynamic graph storage systems.

They indicate one extreme case where the storage format

is optimized for graph mutations, not graph analysis. Since

Blocked Adjacency-List (BAL) stores a predefined number of

edges (e.g., 512 edges in our case) in a continuous block,

it can produce better cache behavior hence leading to better

performance than the plain Adjacency-List (with the cost of

higher memory consumption). So, in most of the results, we

just report the performance of BAL instead of both.

As the state-of-the-art PMA-based CSR extension, PCSR is

another graph format we compare. We modified and improved

PCSR based on its open-source implementation for a fair

comparison [25]. Specifically, we remove the binary search

part in PCSR as all the new edges will be inserted at the very

end of its source vertex’ neighbors. We confirmed that this

optimization produces better results compared with the default

code. And we always reported the improved performance of

PCSR in later sections.

Random/Hammer Workload. To show that VCSR works

76

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

Graph kernel Kernel Type Input Output Notes

PageRank (PR) Link Analysis - |V |-sized array of ranks Fixed number (20) of iterations
Breadth-First Search (BFS) Graph Traversal Source vertex |V |-sized array of parent IDs Direction-Optimizing approach [27]
Single-Source Shortest Paths (SSSP) Shortest Path Source vertex |V |-sized array of distances δ-stepping [28]
Connected Components (CC) Connectivity - |V |-sized array of component labels Afforest subgraph sampling [29, 30]

TABLE II: A list of graph kernels and inputs and outputs used to evaluate graph data-structures.

Datasets Domain |V | |E| |E|/|V |

Amazon purchase 403393 4886816 12
Orkut social 3072626 234370166 76
Live-journal social 4847570 85702474 18
Cit-Patents citation 6009554 33037894 6
Road geo 1971280 5533214 3
as-Skitter network 1696414 22190596 13

sx-stackoverflow temporal 6024270 57724802 10
enron temporal 87273 594912 7
sx-mathoverflow temporal 88580 375972 4
fb-wall temporal 63891 366824 6

TABLE III: Graph inputs and their key properties.

well in different scenarios, when using the static graphs, we

manually generate two different types of insertion patterns.

First, we randomly shuffle all the edge insertions. We name

this Random Workload. Second, we aggregate all edges of

the same vertex and insert them all together. We name this

Hammer Workload as an extreme case discussed earlier.

B. Graph Insertion Performance

We first compare the graph insertion performance. In this

experiment, we first insert edges from the first X% base graph.

Then, we insert the rest of the graphs into the existing graph.

All the edges were ordered based on either the manually

created insertion patterns (randomly shuffled) or their inherent

order from the temporal graphs. For each case, we measured

the time of dynamic graph insertions. We evaluated cases with

X values from 10% to 50%. Due to limited space, we show

the results with 10% and 30% in Fig.6 and Fig. 7. Here, the

y-axis shows the execution time for building the graph. So,

smaller values indicate better performance. The left sub-figure

shows the performance of different static graphs with random

workloads. The right sub-figure shows the performance of

different temporal graphs. Note that, the results for VCSR are

based on the default VCSR (pure degree-based strategy). We

did not show the results of VCSR with the ‘tracking insertion

history’ option because 1) it is not the default VCSR setting;

2) it constantly introduces around 10% overhead compared

with the default VCSR. We will discuss more about it in later

evaluations on hammer workloads.

These results clearly show VCSR gains better performance

compared with PCSR across all cases. VCSR has achieved

1.41x-3.81x times better performance than PCSR in static

graphs with Random Workloads. It achieved more than 2.0x

better performance on all the temporal graphs as well.

Inserting an edge in BAL is essentially appending an edge

to the per-vertex edge list. Hence it is expected to have good

performance. Our evaluation results confirm that. Interestingly,

VCSR PCSR BAL

25

105

185

42
.2
4 12

5.
80

39
.0
5

40
.9
4

18
.6
7

Amazon Orkut Live-j
ournal

Cit-Pa
tents

Road AS-Ski
tter

0

5

10

0.
55

13
.7
0

5.
82

0.
93 2.
79

1.
47

12
.7
6

2.
18

9.
61

0.
75

9.
19

2.
96 4.
43

0.0 0n.2O 0Live 0-P6Pa 0d .8A 1.0
0.000

0.2
5

0.4

0
22
6
5

0.8

1.0

In
se
rt
T
im
e
(S
ec
on
ds
)

(a) Random Workload

5

35

65

19
.5
8 41
.7
3

8.
49

sx-stack
overflow

enron sx-math
overflow

fb-wall
0.0

0.1 0.
07

0.
05

0.
03

0.
16

0.
12

0.
080.

13

0.
04 0.
07

(b) Temporal Graphs

Fig. 6: Dynamic graph insertion performance in seconds for 10%
pre-initialization.

VCSR PCSR BAL

25

75

125

175

27
.2
9 10

3.
98

29
.6
0

31
.4
5

Amazon Orkut Live-j
ournal

Cit-Pa
tents

Road AS-Ski
tter

0

5

10

0.
51

10
.0
4

4.
56

1.
23 3.
40

1.
44

9.
70

1.
74

7.
65

0.
77

13
.3
8

6.
00

3.
29 4.
22

0.0 0n.2O 0Live 0-P6Pa 0d .8A 1.0
0.000

0.2
5

0.4

0
22
6
5

012.285

1
17
.

7
0
5

In
se
rt
T
im
e
(S
ec
on
ds
)

(a) Random Workload

5

25

45

13
.7
9 31

.8
7

6.
83

sx-stack
overflow

enron sx-math
overflow

fb-wall
0.0

0.2

0.4

0.
06

0.
05

0.
020.
13

0.
10

0.
070.
09

0.
03

0.
05

(b) Temporal Graphs

Fig. 7: Dynamic graph insertion performance in seconds for 30%
pre-initialization.

the performance of VCSR is very close to BAL in many

cases. Note that, the design goal of VCSR is not to beat BAL

in dynamic graph insertions. Instead, the comparable graph

mutation performance is already impressive considering the

memory layout of VCSR will be more compact and can deliver

much better performance for graph analytic workloads.

To further reveal the reason why VCSR performs better

than PCSR, we measured the detailed number of re-balancing

operations triggered by edge insertions. The re-balancing

needs to move edges in multiple sections, hence contributing

the most overheads in both VCSR and PCSR. The results are

shown in Table IV. Here, we report the number of re-balancing

operations triggered from different tree levels (higher tree

levels indicate more overhead during re-balancing). Since the

sections in VCSR have variable sizes but sections in PCSR

have the same size, we also report the actual memory accesses

that occurred during these re-balancing for a fair comparison.

Due to the space limit, we only show results of randomly

shuffled Amazon and sx-Stackoverflow graphs. Other graphs

show similar results. From these results, we can easily observe

VCSR significantly reduce the number of re-balancing as

well as the memory accesses needed to perform them. This

again confirms that the performance improvement of VCSR

77

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

mainly comes from the lower number of re-balances due to

its adaptive gaps redistribution.

Dataset Tree
Levels

VCSR
(Mem. Acc.)

PCSR
(Mem. Acc.)

Amazon
(shuffled)

[1-3) 710 (0.84 M) 251077 (35.50 M)
[3-7) 4 (0.02 M) 12964 (8.49 M)
≥ 7 0 (0.00 M) 45 (0.41 M)

sx-Stack
overflow

[1-3) 904363 (457.23 M) 13876752 (2262.72 M)
[3-7) 357575 (1056.19 M) 3053307 (2720.56 M)
[7-15) 26530 (1594.56 M) 70307 (1704.70 M)
≥ 15 21 (438.37 M) 288 (2531.68 M)

TABLE IV: Number of re-balancing operations triggered by edge
insertions in VCSR and PCSR on two graphs.

C. VCSR Performance on Hammer Workload

In the previous evaluations, we show the performance

advantages of default VCSR (pure degree-based strategy). As

discussed earlier, such a strategy may have issues with ex-

treme workloads; and the optional ‘tracking insertion history’

feature supported by VCSR can help. In this section, we will

show how VCSR and VCSR+Tracking perform on Hammer

insertion patterns. Specifically, for each graph, we inserted

the first 10% of it as base graph. Then, we inserted the rest

of the graph and counted how long it took. The results are

reported in Fig. 8. From these results, we can observe that for

such an extreme insertion pattern, VCSR basically performs

the same as PCSR. The previously observed big performance

improvements disappear. This is because the degree-based

distribution is as inaccurate as the even distribution now. With

history tracking enabled, VCSR+Tracing is able to perform

better than PCSR again, because the recent insertion history

captures the intensive insertion patterns. However, it is impor-

tant to note that such a result does not mean VCSR+Tracking

is better than default VCSR. As described earlier, for real-

world temporal graphs or insertion patterns that are not so

extreme, VCSR still performs better than VCSR+Tracking.

We demonstrate this in Fig. 9, where we show the normalized

insertion performance of VCSR and VCSR+Tracking on real-

world temporal graphs and shuffled static graphs. We show the

same 10% pre-initialization case as Fig. 8. The results show

that compared with VCSR, VCSR+Tracking takes a longer

time (up to 1.35x) to finish insertion.

VCSR+Tracking VCSR PCSR BAL

70

170

270

15
9.
69

19
1.
90

63
.7
0

Amazon Orkut Live-j
ournal

Cit-Pa
tents

Road AS-Ski
tter

0

15

30

45

0.
57

53
.6
6

22
.7
2

6.
87

1.
21 15

.5
1

1.
15

51
.4
7

11
.0
9

2.
06

39
.1
4

3.
00

22
.3
5

3.
15 16

.2
2

0.
36

3.
02

4.
95

4.
88

2.
64

2.
49

0.0 0.2 0LLiv 0-PP6Pa 0.8 1.0
0.000

03.20

0
4
.

4
4
5

0
77
6
0

0
27
.8
0

1.0

In
se
rt
T
im
e
(S
ec
on
ds
)

Fig. 8: Insertion performance (in seconds) for hammer workload in
10% Pre-initialization case.

VCSR+Tracking VCSR

Amazon Orkut Live-j
ournal

Cit-Pa
tents

Road AS-Ski
tter

sx-stack
overflow

enron sx-math
overflow

fb-wall

0.6

1.2

1.8

N
or
m
al
iz
ed

R
un
ni
ng

T
im
e

0.
97 1.
05

1.
07 1.
15

1.
07 1.
13

1.
05

1.
35

1.
32

1.
18

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Fig. 9: Normalized insertion performance for 10% pre-initialization.

D. Graph Analytic Algorithms Performance

The ultimate goal of extending mutable CSR is to leverage

its good performance on graph analysis. In this evaluation,

we systematically compared the performance of CSR, VCSR,

PCSR, and BAL layouts running different graph algorithms

on all graph inputs in both single-thread and multi-thread (32

threads) settings. All the results are reported in Fig. 10 and

Table V. Due to the space limitation, we can only show the

plots of two graphs: Orkut and Road in Fig. 10. We present

the performance of the other four graphs in Table V. All the

reported results are normalized using CSR as the baseline.

Since CSR is fully compacted, it provides the best graph

analysis performance. Other storage layouts should present a

value larger than 1. Larger values indicate worse performance.

From these results, we can observe that in all the graphs,

VCSR performs very close to CSR in both single thread

and 32-thread settings. For instance, it only introduces 5%

overhead to run PageRank on Orkut graph in 32-thread com-

pared with CSR. While, the state-of-the-art PMA-based CSR

extension, PCSR introduced 87% overhead upon CSR in the

same setting. In general, we observe 1.22x-2.05x performance

overhead from PCSR compared with our VCSR. The blocked

adjacency list (BAL), designed for easy graph mutations,

performs the worst in most of the settings. For instance, it runs

PageRank 10x longer on Road graph using 32 threads. These

results clearly show the advantage of VCSR in supporting

graph analysis algorithms. The key behind its performance is

its adaptive gap distribution that can maximally preserve the

good cache behaviors.

To summarize, from these experiments, we show that VCSR

is able to achieve both good graph insertion performance

compared with storage formats that are designed for graph

mutations such as AL and BAL and similar graph analysis

performance compared with immutable compacted storage

formats such as CSR, showing it as a promising storage format

for in-memory dynamic graphs.

VI. RELATED WORK

There have been a enormous number of studies on in-

memory sparse graph or matrix storage formats for effi-

ciently running graph analytic algorithms, such as diagonal

format (DIA) [7], compressed sparse row (CSR) [9], Ellpack

(ELL) [6], and many others [9]. However, these formats are

not designed for dynamic or temporal graphs and hence often

have limited performance in graph mutations.

78

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

CSR VCSR PCSR BAL

Orkut Road
0

2

N
or
m
al
iz
ed

R
un
ni
ng

T
im
e

1.
00

1.
001.
11 1.
25

2.
02

2.
572.

24

6.
04

(i) PageRank

Orkut Road
0

2

1.
00

1.
001.
11

0.
92

1.
73

1.
522.

05

4.
11

(ii) BFS

Orkut Road
0

2

1.
00

1.
00

1.
03

1.
111.
47

1.
45

1.
20 3.

38

(iii) SSSP

Orkut Road
0

2

1.
00

1.
00

1.
00

1.
08

1.
13 1.
511.
86

8.
96

(iv) CC

(a) 1-Thread

Orkut Road
0

2

N
or
m
al
iz
ed

R
un
ni
ng

T
im
e

1.
00

1.
00

1.
05 1.
321.

87

1.
611.
85

13
.2
9

(i) PageRank

Orkut Road
0

2

1.
00

1.
00

1.
08

1.
081.
47

1.
313.
10

2.
76

(ii) BFS

Orkut Road
0

2

1.
00

1.
00

1.
01

1.
08

1.
84

1.
061.
24

1.
32

(iii) SSSP

Orkut Road
0

2

1.
00

1.
00

1.
01 1.
22

1.
27

1.
99

4.
62

15
.2
7

(iv) CC

(b) 32-Threads

Fig. 10: Time to run Graph Analysis normalized to CSR.

PageRank BFS

CSR VCSR PCSR BAL CSR VCSR PCSR BAL
Graph T1 T32 T1 T32 T1 T32 T1 T32 T1 T32 T1 T32 T1 T32 T1 T32

Amazon 1(0.27) 1(0.02) 1.40 1.17 2.27 1.96 4.55 7.71 1(0.03) 1(0.00) 1.15 1.26 1.42 1.69 3.70 5.81
Live-journal 1(6.54) 1(0.41) 1.10 1.14 1.75 1.61 3.06 4.59 1(0.22) 1(0.02) 1.13 1.12 1.74 1.48 2.88 6.97
Cit-Patents 1(4.26) 1(0.27) 1.11 1.14 1.82 1.76 3.03 5.14 1(0.29) 1(0.02) 1.12 1.16 1.92 1.77 3.00 6.42
AS-Skitter 1(1.21) 1(0.09) 1.23 1.19 1.95 1.57 4.89 6.74 1(0.06) 1(0.00) 1.35 1.24 2.02 1.66 7.06 12.02
Stackoverflow 1(4.55) 1(0.29) 1.17 1.15 1.91 1.72 2.15 2.69 1(0.18) 1(0.01) 1.22 1.29 1.66 1.58 1.66 5.32
Enron 1(0.02) 1(0.00) 1.43 1.43 2.26 1.58 5.08 14.03 1(0.00) 1(0.00) 1.19 1.53 1.84 1.88 3.22 7.47
Mathoverflow 1(0.01) 1(0.00) 1.19 1.35 2.55 1.71 3.26 3.69 1(0.00) 1(0.00) 1.03 0.91 1.66 1.71 1.72 1.79
FB-Wall 1(0.01) 1(0.00) 1.27 1.35 2.99 1.87 5.01 9.32 1(0.00) 1(0.00) 1.11 0.73 1.97 1.01 2.99 2.41

SSSP CC

CSR VCSR PCSR BAL CSR VCSR PCSR BAL
Graph T1 T32 T1 T32 T1 T32 T1 T32 T1 T32 T1 T32 T1 T32 T1 T32

Amazon 1(0.08) 1(0.02) 1.12 1.07 1.33 1.26 1.92 1.23 1(0.05) 1(0.00) 1.14 1.23 0.92 1.53 2.46 5.01
Live-journal 1(1.53) 1(0.10) 1.02 0.97 1.24 1.42 1.31 1.44 1(0.50) 1(0.02) 1.07 1.07 1.27 1.26 3.11 6.32
Cit-Patents 1(0.97) 1(0.07) 1.01 1.03 1.28 1.52 1.34 1.50 1(0.69) 1(0.03) 1.14 1.11 1.20 1.24 2.44 3.84
AS-Skitter 1(0.35) 1(0.04) 1.13 1.05 1.28 1.39 1.50 1.45 1(0.11) 1(0.01) 1.31 1.14 1.35 1.40 6.04 8.62
Stackoverflow 1(0.94) 1(0.08) 1.04 1.02 1.47 1.36 1.32 1.42 1(0.35) 1(0.02) 1.28 1.05 1.48 1.23 2.04 4.39
Enron 1(0.00) 1(0.01) 1.19 1.09 1.34 1.15 2.23 1.10 1(0.00) 1(0.00) 1.23 1.39 1.37 1.51 5.86 3.55
Mathoverflow 1(0.00) 1(0.01) 1.12 0.97 1.60 1.02 1.94 1.05 1(0.00) 1(0.00) 1.18 1.17 1.53 1.38 2.18 1.73
FB-Wall 1(0.00) 1(0.02) 1.13 1.06 1.59 1.11 2.05 1.10 1(0.00) 1(0.00) 1.21 1.10 1.52 1.21 3.45 2.30

TABLE V: The normalized running time of different algorithms (PageRank, BFS, SSSP, CC) on CSR, VCSR, PCSR, and BAL. CSR
format is the baseline for all cases. We also add the actual runtime of CSR (in seconds). T1 denotes the time of one thread and T32 denotes
the time of 32 threads.

To support temporal graphs, researchers proposed several

CSR extensions, including GPMA [13] and PCSR [12]. Both

of them leverage the packed memory array data structure, and

share the same limitation as they consider graph edges as the

array elements and ignore the imbalanced graph structures.

VCSR is able to significantly outperform them by introducing

a new vertex-centric strategy to use the PMA.

Other data structures such as adjacency list, edge list, or tree

are often used to build graph databases that can efficiently sup-

port graph mutations. Compared with VCSR, they often suffer

in graph analysis performance due to poor cache usage. For

example, Aspen [32] is a compressed purely-functional search

tree designed for streaming graphs. Its graph analysis suffers

due to the high cache miss of tree structure. STINGER [33] is a

data structure for streaming graphs based on the linked lists of

blocks, so it suffers due to the pointer chasing while accessing

the graph. VCSR is designed to efficiently support graph

mutations without scarifying its graph analysis performance.

VII. CONCLUSION AND FUTURE WORK

In this study, we present VCSR, a new mutable CSR

graph storage format, to support both high-performance graph

analytic tasks and graph mutations. VCSR introduces a novel

vertex-centric strategy to use the packed memory array (PMA)

structure to achieve our goal. Throughout extensive evalu-

ations, we confirm that VCSR achieves better performance

than the state-of-the-art mutable CSR extensions on both graph

insertion and graph analysis. In the future, we plan to further

investigate other re-balancing strategies to better leverage the

degree information.

79

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their

valuable feedback. This work is supported by NSF grants

CCF-1908843, CCF-1910727, and CNS-1852815.

REFERENCES

[1] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a
social network or a news media?” in Proceedings of the 19th
international conference on World wide web, 2010.

[2] Y. Zhou, L. Liu, S. Seshadri, and L. Chiu, “Analyzing enterprise
storage workloads with graph modeling and clustering,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 3,
pp. 551–574, 2016.

[3] R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the
world-wide web,” nature, vol. 401, no. 6749, 1999.

[4] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L.
Barabási, “The large-scale organization of metabolic networks,”
Nature, vol. 407, no. 6804, pp. 651–654, 2000.

[5] D. Dai, R. B. Ross, P. Carns, D. Kimpe, and Y. Chen, “Using
property graphs for rich metadata management in hpc systems,”
in Parallel Data Storage Workshop (PDSW), 2014 9th. IEEE,
2014, pp. 7–12.

[6] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient
sparse matrix-vector multiplication on x86-based many-core
processors,” in Proceedings of the 27th international ACM con-
ference on International conference on supercomputing, 2013,
pp. 273–282.

[7] Y. Saad, Iterative methods for sparse linear systems. SIAM,
2003.

[8] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E.
Leiserson, “Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks,” in Pro-
ceedings of the twenty-first annual symposium on Parallelism
in algorithms and architectures, 2009, pp. 233–244.

[9] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector
multiplication on gpus using the csr storage format,” in SC’14:
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE,
2014, pp. 769–780.

[10] “Twitter statistics,” http://www.statisticbrain.com/
twitter-statistics/.

[11] P. Kumar and H. H. Huang, “Graphone: A data store for
real-time analytics on evolving graphs,” in 17th {USENIX}
Conference on File and Storage Technologies ({FAST} 19),
2019, pp. 249–263.

[12] B. Wheatman and H. Xu, “Packed compressed sparse row: A
dynamic graph representation,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 2018, pp. 1–7.

[13] M. Sha, Y. Li, B. He, and K.-L. Tan, “Technical report:
Accelerating dynamic graph analytics on gpus,” arXiv preprint
arXiv:1709.05061, 2017.

[14] D. De Leo and P. Boncz, “Packed memory arrays-rewired,” in
2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 2019, pp. 830–841.

[15] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs
over time: Densification laws, shrinking diameters and
possible explanations,” in Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, ser. KDD ’05. New York, NY,
USA: Association for Computing Machinery, 2005. [Online].
Available: https://doi.org/10.1145/1081870.1081893

[16] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-
centric graph processing using streaming partitions,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 2013.

[17] A. Pinar and M. T. Heath, “Improving performance of sparse
matrix-vector multiplication,” in SC’99: Proceedings of the
1999 ACM/IEEE Conference on Supercomputing. IEEE, 1999.

[18] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer,
“Llama: Efficient graph analytics using large multiversioned
arrays,” in 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 2015, pp. 363–374.

[19] M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-
oblivious b-trees,” in Proceedings 41st Annual Symposium on
Foundations of Computer Science. IEEE, 2000, pp. 399–409.

[20] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs
in temporal networks,” in Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining,
ser. WSDM ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 601–610. [Online]. Available:
https://doi.org/10.1145/3018661.3018731

[21] B. Klimt and Y. Yang, “The enron corpus: A new dataset for
email classification research.” Springer Berlin / Heidelberg,
2004, vol. Volume 3201/2004, pp. 217–226. [Online]. Available:
http://www.springerlink.com/content/q8g7blqvqyxrpvap/

[22] M. Beladev, L. Rokach, G. Katz, I. Guy, and K. Radinsky,
“Tdgraphembed: Temporal dynamic graph-level embedding,”
in Proceedings of the 29th ACM International Conference
on Information amp; Knowledge Management, ser. CIKM
’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 55–64. [Online]. Available: https:
//doi.org/10.1145/3340531.3411953

[23] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large
network dataset collection,” http://snap.stanford.edu/data, 2014.

[24] M. A. Bender and H. Hu, “An adaptive packed-memory array,”
ACM Transactions on Database Systems (TODS), vol. 32, 2007.

[25] “Dynamic data structure for sparse graphs,” https:
//github.com/wheatman/Packed-Compressed-Sparse-Row,
accessed July, 2021.

[26] S. Firmli, V. Trigonakis, J.-P. Lozi, I. Psaroudakis, A. Weld,
D. Chiadmi, S. Hong, and H. Chafi, “CSR++: A Fast, Scalable,
Update-Friendly Graph Data Structure,” in 24th International
Conference on Principles of Distributed Systems (OPODIS
’20), Strasbourg (on line), France, Dec. 2020. [Online].
Available: https://hal.archives-ouvertes.fr/hal-03060095

[27] S. Beamer, K. Asanovic, and D. Patterson, “Direction-
optimizing breadth-first search,” in SC ’12: Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, 2012, pp. 1–10.

[28] U. Meyer and P. Sanders, “δ-stepping: A parallelizable
shortest path algorithm,” J. Algorithms, vol. 49, no. 1, p.
114–152, Oct. 2003. [Online]. Available: https://doi.org/10.
1016/S0196-6774(03)00076-2

[29] M. Sutton, T. Ben-Nun, and A. Barak, “Optimizing parallel
graph connectivity computation via subgraph sampling,” in
2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2018, pp. 12–21.

[30] Y. Shiloach and U. Vishkin, “An o(logn) parallel connectivity
algorithm,” Journal of Algorithms, vol. 3, no. 1, 1982.

[31] “Gap benchmark suite,” https://github.com/sbeamer/gapbs, ac-
cessed July. 30, 2021.

[32] L. Dhulipala, G. E. Blelloch, and J. Shun, “Low-latency
graph streaming using compressed purely-functional trees,”
in Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
ser. PLDI 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 918–934. [Online]. Available:
https://doi.org/10.1145/3314221.3314598

[33] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger:
High performance data structure for streaming graphs,” in 2012
IEEE Conference on High Performance Extreme Computing,
2012, pp. 1–5.

80

Authorized licensed use limited to: Wuhan University. Downloaded on April 20,2023 at 02:39:21 UTC from IEEE Xplore. Restrictions apply.

