
VarFS: a Variable-sized Objects based Distributed
File System

Yili Gong, Yanyan Xu
Computer School, Wuhan University

Wuhan, Hubei, China

{yiligong, xuyanyan}@whu.edu.cn

Yingchun Lei
Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China

leiyc@ict.ac.cn

Wenjie Wang
EECS, University of Michigan

Ann Arbor, MI, USA

wenjiew@umich.edu

Abstract—Cloud-based file systems are widely accepted and
adopted for personal and business purposes in recent years.
Statistics shows that approximately 25% of file operations from
a typical user are random writes. Inherited from traditional
disk-based file systems, most distributed file systems are also
based on objects or chunks of fixed sizes, which work well
for sequential writes but poorly for random writes. This paper
investigates the design paradigm of variable-sized objects for a
distributed file system. A novel distributed file system named
VarFS, is presented to incorporate variable object indexing and
support random write operations. VarFS reduces the amount of
unnecessary data being read and the number of objects modified
in face of updates and consequently alleviates the total amount of
data transferred. The implementation is based on Ceph and the
performance measurements show that it can achieve 1-2 orders of
magnitude less latency than Ceph on random writes. At the same
time the overhead for initial writes and re-writes is acceptable.

Keywords—Distributed File System; Fixed-sized Chunk;
Variable-sized Object; Random Write;

I. INTRODUCTION

Cloud-based file systems and document storage services,
such as Dropbox and Evernote, provide a reliable and conve-
nient way for users to backup personal and/or working files
in the cloud as well as update them when necessary. At the
same time, they have become a base layer for a variety of
applications. For instance, Facebook Messages (FM) stores its
data in a distributed database (HBase [1]) atop a distributed
file system (HDFS [2]). For another example, the maturity of
desktop virtualization puts heavy reliance on large scale file
systems.

The typical distributed file systems, like HDFS, are created
to store large files in fixed sized chunks, typically 64 MB.
Some file systems are based on objects in smaller sizes, e.g. 8
MB, like Ceph [3] and Lustre [4]. All these file systems follow
the POSIX interface, and are optimized for sequential I/Os,
such as sequential reading and appending. They assume that
once created, files will rarely be modified by random writes.
For a large number of applications, e.g. data analysis programs,
archival data, or file processing, this assumption is valid and
they are well supported by such file systems. Unfortunately
for personal user file services and many other applications, the
assumption does not hold. As a rule of thumb approximately
25% of a typical user’s overall file access consists of random

This work is supported by the National Natural Science Foundation of China
under Grant No. 61100020 and 61373160, and Huawei Innovation Research
Program.

writes. 90% of the FM files are smaller than 15MB and the I/O
is highly random according to [5]. Study [6] shows that VDI
(Virtual Desktop Infrastructure) storage workloads are write-
heavy and can take up 65% of I/O operations.

Using commonly accepted POSIX write semantics, when
inserting a single byte into the midst of a file, a user has to
read the data from the insertion point to the end of the file
and write back the inserted byte together with the unaffected
original ones. In distributed environments, where networks
between users and storage servers are not always in the best
condition, reading and writing unnecessary large amount of
data chunks not only consume processing power on both
clients and servers, but also suffer low throughput caused by
network transmission overhead. The key reasons for such I/O
behavior are 1) the absence of sufficient knowledge for file
systems to identify unnecessary data transfer; and 2) the fixed
chunk size forcing chunk re-mapping even with most content
being unchanged.

Research on local file systems also try to adopt variable-
sized blocks to counter the influence of fixed-sized schemes on
writes. ZFS [7] manages its space with variable sized blocks in
powers of two and the space for a single file is allocated with
one block size. In local file systems like BTRFS [8], files are
stored in extents, which hold the logical offset and the number
of blocks used by this extent record. This allows performing
a rewrite into the middle of an extent without having to read
the old file data first.

This paper investigates the alternative design paradigm of
variable-sized objects for a distributed file system, with the
goal to reduce the amount of data transferred by random writes
and consequentially improve the user experience. We proposes
a new distributed file system, named VarFS, with a few key
design novelties for variable chuck sizes, includes (1) mapping
files into objects; (2) organizing metadata; (3) designing new
read and write operation procedures. VarFS chooses to divide
files based on their content, thus a change in the middle of a
file generally does not impact the objects in the following part
of the file. At the same time it provides a convenient way to
identify each object by its content and thus can be used for
global data de-duplication.

A prototype of VarFS is implemented and evaluated thor-
oughly for various file operations. With the new design, the
amount of data transferred over the network is significantly
reduced. The experiments show that the insertion, delete and
random write performance of VarFS can outperform traditional

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE

DOI 10.1109/HPCC-CSS-ICESS.2015.54

148

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:56 UTC from IEEE Xplore. Restrictions apply.

file system by two orders of magnitude for large files. At
the same time, the overhead for initial write and re-write is
acceptable.

The outline of the paper is as follows. Section II explains
the design of the key components of VarFS and the read/write
protocols. Section III describes the implementation of VarFS.
VarFS is evaluated and results are presented in Section IV. We
review related work in Section V and conclude the paper in
Section VI.

II. DESIGN

The main design goal of VarFS is to allow file writes
only impacting the directly modified objects or just a limited
number of adjacent objects, which in turn leads to less data
movement, and consequently brings the benefit of less replica-
tion updates and better performance in unfavorable wide area
networks. With the new design, before a client submits some
data for writing, it will try to re-group the data into proper
objects and compare them for identical or unchanged ones that
have already been in the server side. If the objects do not exist
on server side, the objects will be written back. Otherwise they
will be skipped. For example, a single byte is deleted from the
very beginning of a file in a client’s cache, the content of the
object containing the deleted byte is changed, while the other
objects in the file remain unchanged. Thus only the changed
object should and will be transferred back to the storage servers
for writing. In some cases, where the changed object happens
to have the exact same content as another object in other files
in the file system, this object does not need to be physically
transferred back either. This is the benefit of content-based
mapping and global de-duplication.

VarFS is compatible with standard POSIX interfaces to
allow application compatibility. Existing applications can still
benefit from the new design without modification. For ex-
ample, in random write, the application may still use the
traditional logic to read and write back the remaining part
of modified file. VarFS will execute the read operations, but
during write back, it may detect that after re-mapping, only the
few directly impacted chucks are modified, and there is no need
to write unmodified chunks back. Of course not all applications
can benefit from this technique. The worst case scenario is
when applications never insert or delete in the middle of a file.
Nonetheless, VarFS provides significant bandwidth reduction
for common mixture of write workloads.

In VarFS data are viewed in three tiers: the file tier, the
object tier, and local storage tier, presented in Fig.1. Files are
divided into variable-sized objects, objects are in flat structure
logically and are stored as local files in local file systems.
For the remainder of this section, we first discuss the overall
architecture of VarFS. Then we introduce the mechanism to
partition a file into variable-sized objects based on its content,
called mapping in this paper. Since the object size is not fixed,
it will be less straightforward to acquire the object ID or
object location from the offset only. The metadata organization
explains the mechanism. Last we show the process of file
reading and writing in the actual VarFS protocols.

A. Mapping

One key design aspect of VarFS is to divide objects accord-
ing to their content, instead of partitioning files into objects

��������	
�

��������
���

����	���	
�����
��

Fig. 1: The design architecture of VarFS.

ad hoc or by positions in files. The main benefits include:
1) it keeps the boundaries between objects self-sustained by
their content, i.e. an object is not or rarely affected by the
modification of other objects in the file; 2) it becomes easy to
tell if an object has been modified in a client and thus need be
transferred back to object storage servers; 3) with these objects
it provides a means to exploit similarities crossing different
files, e.g. auto saved files in online backup file systems, object
files output by continuous compiling, multiple revisions for a
file in revision control systems, etc.

We borrow the approach from [9] and use the Rabin finger-
print algorithm [10] to divide a file into variable-sized objects
based on its content. A Rabin fingerprint is the polynomial
representation of the data modulo a predetermined irreducible
polynomial. For each object a hash value is computed by
a SHA-1 hash function. It is the widely accepted practice
of assumption that no hash collisions and two objects with
the same hash value are considered identical. Based on the
uniqueness of hash values, we can determine objects changed
or not by comparing the ones in client-side cache with the
original ones from servers.

With Rabin fingerprinting, a file is treated as a stream of
bytes. VarFS examines every piece of data in a 48-byte window
and with probability 2−n considers it the end of a region as
an object. The 48 byte ending zone of an object is called a
breakpoint. The Rabin fingerprint of a window is calculated
and if its low-order n bits equal to a chosen value, it is a
breaking point. Here n is a pre-configured parameter, by which
we adjust the expected object size correspondingly changes.
Through experiments with various window sizes and ns, we
find that 1) the window size has little effect thus it is set to 48
bytes; and 2) 1 MB mean object size provided best results thus
n is set as 20. To avoid odd cases like too small or too large
objects, VarFS defines the minimum and maximum object size,
2 KB and 8 MB respectively.

B. Metadata Organization

Metadata describe the organization and structure of a file
system, usually including directory contents, file attributes,
file block pointers, state information of physical space, etc.
Each file has a corresponding inode to record this related
information. For simplicity and clarification, in this paper we
focus on illustrating the aspects of the metadata design related
to variable-sized objects. There are other equally important

149

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:56 UTC from IEEE Xplore. Restrictions apply.

parts not described here as they are out of the scope of this
paper.

In VarFS, files are divided into objects that are stored as
local files in local file systems. The core of file metadata is
inodes which are organized as trees like in most file systems.
Objects themselves are in flat structure and their metadata are
well suited for key-value stores. The metadata for an object
include its globally unique object ID, size, all storage locations,
SHA-1 value and reference count. Every object is indexed by
its SHA-1 hash and the key-value store maps these hash values
to corresponding objects. In order to identify duplicated objects
by their content quickly, SHA-1 values will be searched. The
reference count is the number of files which contain the object.
Each time an object is removed from a file, the object should
be purged out from the file’s inode, and its reference count
should be subtract by one. When the reference count reaches
down to zero, this object does not belong to any file and could
be deleted immediately or cleaned up by a garbage collector
later. Alternatively, in a multi-versioned file system, the deleted
objects, even though no longer referenced, could be marked
with version numbers for historical purpose.

Besides the common attributes, pointers to objects are
also included. Keeping what is required for object locating
in a file’s inode will quicken metadata lookups. This brings
the risk of potential inconsistency, but improves performance
significantly, because if each file offset locating results in a
database query it will be too expensive. VarFS adds necessary
meta information of an object required for data position to
its file’s inode, including <object ID, start offset, end offset,
location>. Accordingly with an offset in the file, it can be
mapped to an offset in an object by simply looking up the
inode. Locations in inodes can be considered as cache for the
database and only when a request for a location fails, usually
due to void or staleness, the up-to-date information will be
fetched from database for future queries. If a user tries to
modify the content of an object, a new object is always created
and the count on the old one will be subtracted by one.

C. File Access

A VarFS client is installed on each host executing the
application code and exposes applications with a POSIX-
compatible file system interface. Each client maintains its own
file data cache, independent of the kernel page or buffer caches,
making it accessible to the applications that link to the client
directly.

1) File Reads: When a user opens a file, the client sends
the request to a metadata server. If the file exists and the
access is granted, a metadata server traverses the file system
hierarchy to translate the file name into a file handle. The
handle corresponds to the file inode, which includes a unique
inode number, the file owner, mode, size and other per-file
metadata.

Fig. 2 shows how to read a file in VarFS. When a user
acquires data from a file, the client sends a read request to a
metadata server with the file handle, the file offset, and the
requested size. The metadata server checks the permission
for the read and if the request is valid. If so, it looks up
the file’s inode, searches the mapping for the objects that the
requested data are mapped to, and then calculates object offsets

�����
���

	���
�����

������
������

�

��
���	�

	����
����

������
��

�����
����

� ��
�

��	
�����������!
�
�
� ����
� ��
"#
���

$�%%��&��
"#
��
 � ���������
��
������ ���
�������
��

������ ���������������!
�
�
� ���
����
�

����������!

������
�'
��

����
� �������

��	
��
� ��!������
�����(
��

����
�����

��

����
� �������

����
�����

��

)
�#������� ����

)
�#������� ���

*#������������!
�

*#������������!
�

)
� ������!�

Fig. 2: Reading a file in VarFS.

for their file start offset and end offset, which are returned to
the client with objects’ locations. Upon receiving object and
location information, the client will retrieve all returned objects
from data servers that are not in local cache. An object’s
SHA-1 hash, in 20 bytes in VarFS, is attached whenever the
object is retrieved from data servers. This design saves hash
computation on clients and is convenient for hash comparison
to detect object changing.

���+���
�����

$�%��!
������
 � ���������
��
���,��������������

-��%��
���
���.��/01��!��!
��
+��!����&���	���
���.,�������#� �
����!
 ���
�'
��!��������
� �
#�����!
 ���
���.�!��!
�����

�
�'
�
!��!��������� �����

!��!����� �����

�
�'
��!������������
� � ����

�
'
��!������

�
�'
��!���
'
���!��&��������
-�	�#	��
�!��!����������%#�������� �
!��!����� �����
�'
���� � �����

2��
������#% ��
���	
�
����#������
�� �����
�'
�

��	
��	��
 ���
�#������#�
�

����!
�3�!��!��
����!
�3�!��!��

���
����

#���
!��

!��
�

���
�#�

 �!
��!

��

�4

��	
���������!�

�4

Fig. 3: Writing a file in VarFS.

2) File Writes: When a user executes a write request, the
client locates the related boundary object(s), i.e. the object(s)
containing the starting point, offset, and the ending point,
offset+nbytes. If the boundary objects are not in the client’s
cache, the client will retrieve them from data servers and
combine them with the written data from the user buffer. The
Rabin fingerprint algorithm is applied to the combined data
and mapped them into objects. Before the objects are written
back to servers, VarFS checks their existence in the system by
comparing their SHA-1 hashes with those of original objects
for fast track and with ones in the database for slow track.
Objects that are not in the system are tagged as dirty and waits
to be written back to data servers. The file writing processing
in VarFS is as shown in Fig. 3.

150

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:56 UTC from IEEE Xplore. Restrictions apply.

Actually any write can be transformed into a sequence of
deletions and insertions. Only when a deletion or insertion in-
volves boundaries of objects, multiple original adjacent objects
will be directly changed. Otherwise only the object containing
the modification point will be updated. It is rare that inser-
tion may cause chain reactions to re-map multiple sequential
objects because of the maximum size requirement in objects.
Similarly, it is rare for deletion impacts multiple objects due to
the minimum size requirement. In these cases, VarFS transfers
more objects than the directly impacted ones, but it still saves
more data movement than traditional distributed file systems.

III. IMPLEMENTATION

We implemented VarFS on the basis of Ceph, an open
source distributed file system. Only the necessary parts are
revised to implement our core design and made the system
workable. Our prototype contains roughly 6000 lines of mod-
ified C++ code.

The overall architecture of VarFS implementation is shown
in Fig.4. Applications access VarFS through FUSE and the ker-
nel with the read and random write interface. Clients interpret
requests and call corresponding processing procedures. File
metadata servers store file related metadata and are responsible
for answering corresponding requests. Object metadata servers
are a key-value store holding object information and processing
object adding/removing/duplication queries. OSD servers store
objects and have their own local file systems.

��
���$
�� �����
�'
��

0%%	��������

��
���$�%%��&

�
� ���
�+���
���
�%+���
��

+���
�%���
����& �
� �%���
����&

��	
�$
�� �����
�'
��

�����
�'
��

-	�
��

)
 ��5����
�'
��

�#�

4

��
	

Fig. 4: Overview of the VarFS implementation.

In Ceph, every object has a globally unique object ID
which consists of an inode number and an object number. An
object is located by its object ID through CRUSH (Controlled
Replication Under Scalable Hashing). In VarFS an object can
belong to multiple files, thus an object ID should be a unique
number independent of files. To exploit Ceph’s code as much
as possible, we set an object ID as a concatenation of an inode
number and a global object stamp that will be incremented by
one each time used. The inode is of the first file that introduces
the object and even the object is deleted from this file it still
remains; the object stamp will keep the uniqueness even after
revisions. From the perspective of clients and metadata servers,
the object storage cluster is viewed as a single logical object
store. VarFS uses Ceph’s Reliable Autonomic Distributed
Object Store (RADOS) to handle object placement, object
duplication, cluster expansion, failure detection and recovery.
In VarFS, object storage at OSDs is the same with Ceph, except
that VarFS attaches its SHA-1 value to the end of each object.

Before written to OSDs, a file has to be mapped into objects
by Rabin fingerprinting. Through experiments it is found that

this computation is quite time-consuming, thus we optimize it
with multi-threading, specifically 2 and 4 threads. Additionally
the client pipelines the Rabin fingerprint calculation with
the network transfer whenever possible. We also optimize
the data cache in clients to store variable-sized objects and
their information for quick duplicate object identification. The
object IDs, SHA-1 values and locations of recent objects are
cached. Once a new object is created, the local cache is
searched first. If the same object is found, the new object will
be marked as clean, the new mapping information will be sent
to the file metadata server, while the object data will not be
transferred to OSDs. When there is no local match, the SHA-
1 hash of the new object will be sent to the object metadata
server for checking.

IV. EVALUATION

performance of VarFS is extensively measured for its read
and write performance. All the experiments are performed
on a cluster which consists of machines with eight core
2.13GHz Xeon E5606 CPU, 45 GB memory, CentOS 6.3
(kernel version 3.2.51) and XFS as the local file systems.
All hosts communicate using TCP over a Gigabyte network.
An monitor and an MDS are installed on one server, which
are responsible for collecting failure reports and managing
metadata respectively. An OSD is installed on another server,
which stores all file data. Dedicated machines are used as
clients to generate workload and each can host tens to hundreds
of client instances. the client-server bandwidth is set to 10
MB/s.

To avoid the accessing speed limitation of mechanical
hard disks and the influence of prefetch mechanisms, we use
RAMDisk to cache all data within the OSD memory. IOzone
is used to generate and measure standard file operations, and
we additionally implement the random write operations. All
experiment results presented are obtained by averaging ten runs
of each setting over ten 4 GB files.

A. Read, Initial Write and Re-write

Since we use RAMDisk for OSDs and all data are in
memory, sequential reads and random reads perform almost
the same in our experiments, thus only sequential read results
are shown here. Writes in the Standard Posix I/O are similar
to initial writes, so we only present the performance of initial
writes due to the space limit.

Fig.5 shows the throughput of initial writes under different
request sizes and mean object sizes. As the request size grows,
the throughput increases, but when the request size reaches
8 MB, the predefined kernel page size, the throughput keeps
steady, because a 16 MB request will always be split up into
two 8 MB requests. We see that smaller mean object size
always produces better performance, because an initial write
is turned into several appending operations, each of which
need retrieve the last object of the file, and the smaller mean
object size leads to less data transferred. Smaller objects, on the
other hand, generates a larger number of metadata, and reading
or writing the same quantity of data causes more metadata
accesses and object operations. In the following experiments,
the mean object size is set to 1 MB.

151

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:56 UTC from IEEE Xplore. Restrictions apply.

�6

�7

��6

��7

��6

��7

�8 �9 ��6 ��� ��� ��� ��:

;!
��
#&

!%
#�
��$

<
=�
�

)
"#
�����(
���>�4<�

��$

��$

:�$

Fig. 5: The initial write throughput of
VarFS.

Fig. 6: The read throughput of VarFS
and Ceph.

��6

��7

�:6

�:7

�76

�8 �9 ��6 ��� ��� ��� ��:

��
�

��
��
��
�

)
"#
�����(
���>�4<�

-
%!

�����

Fig. 7: The read latency of VarFS and
Ceph.

By design, the read performance of VarFS should not be
very different with that of Ceph. Our experiment confirms this
expectation, shown in Fig.6 and 7. Fig.8 and Fig.9 demonstrate
the initial write throughput and latency when the network
bandwidth between clients and servers is set as 10 MB/s. Since
initial writes in VarFS include object mapping computation,
for a smaller request size the computation is dominant and
as the request size increases, the network becomes saturated
and the performance of VarFS and Ceph gets similar. On one
side the overhead are amortized over the followup random
writes operations; on the other side in real scenarios that the
network between clients and servers is limited, VarFS can
achieve comparable write performance with Ceph for larger
request sizes.

B. Insertion and Deletion

Since insertion and deletion share similar system behavior,
we only show the insertion results. Fig.10 plots the insertion
latency of different inserted data sizes for both VarFS and
Ceph in log-scale. The latency of Ceph is significantly longer
than that of VarFS because not only the inserted data but the
data from the inserting point to the end of the file need to
be transferred. The larger the file, the more the unnecessarily
data transmitted. For VarFS, the file size affects little on the
latency, because most of the time only the object containing
the inserting point and the inserted data is transferred. When
the file size is 4 GB, the latency of VarFS is just 2% of Ceph.
Even for a smaller file of 256 MB, the insert latency is only
45% of Ceph.

The reason of VarFS outperforming Ceph on operations is
the amount of data transferred. VarFS transfers much less data
than Ceph for insertion, only 1% to 9%, presented in Fig.11.
This is particularly true with large files. Even though, for inser-
tion operations, VarFS still computes the Rabin fingerprint of
the inserted data, but the saving on data transferring outweighs
substantially.

C. Random Write

The random write operation equals to deleting data from
a file and inserting some other data to the same position. The
latency shown in Fig. 12 confirms the observation from our
design that VarFS performs considerably better than Ceph for
random writes. The latency of Ceph increases dramatically
with the file size, nevertheless, VarFS is quite inert to the file
size and keeps the latency within 0.5 second or less. Fig. 13
show that in the worst case, VarFS’s latency is about 25%

of Ceph’s result and its data transfer volume is about 5% of
Ceph’s. The performance becomes even more prominent with
larger files. In the best case, VarFS’s random write latency is
only 2% of Ceph and its data transfer volume is about 0.5%.

V. RELATED WORK

ZFS [7] is a filesystem originally developed by SUNTMfor
its Solaris OS. In ZFS, space is managed with variable
sized blocks in powers of two; the space for a single file is
allocated with one block size. BTRFS [8] divides a file into
extents, which are contiguous on-disk area, page aligned and
of multiple page sizes. The concept of variable-sized extents
inspired the surfacing of VarFS. In BTRFS, the logical offset
and the extent size are stored together with data on disk, thus
data insertion will cause all offsets in the following extents
to change. VarFS separates the logical information and the
physical storage to keep distributed data from changing as little
as possible.

GFS [11] and its open source implementation HDFS [2]
target to store very large files and adapted to sequential I/Os,
such as sequential reading and appending operations. Files are
divided into fixed-sized chunks, typically 64 MB, which are
duplicated and distributed across chunk servers or data nodes.
The file systems based on objects, like Ceph [3], Lustre [4],
map file data onto a sequence of objects. The object sizes for
different files theoretically may vary but in practice remain the
same. It is by default set to 8 MB. VarFS distinguishes itself
from these file systems in that files are mapped into variable-
sized objects based on content, which additionally provides
easy means for de-duplication.

Athicha Muthitacharoen et al. present LBFS for low-
bandwidth networks, which exploits similarities between files
to save bandwidth [9]. This paper is based on the concept of
breaking files into variable-sized chunks onto distributed file
systems in data centers as well as WANs to improve random
write performance.

Besides file systems, database is another active battle field
for data management. For record insertions and deletions, one
branch of effort focuses on adopting auxiliary structures to
divide updates into partitions by their storage locality and to
organize random updates into disk friendly sequential accesses,
e.g. [12] [13]. VarFS could benefit from these approaches in
client or server cache to sort and combine updates before
commit. Another branch is to crack database storage into
manageable pieces, usually by key ranges, to reduce update
maintenance effort [14] [15].

152

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: The initial write throughput
with limited network bandwidth.

�76

�?6

�@6

�86

�96

��66

���6

���6

���6

��:6

�8 �9 ��6 ��� ��� ��� ��:

��
�

��
��
��
�

)
"#
�����(
���>�4<�

-
%!

�����

Fig. 9: The initial write latency with
limited network bandwidth.

6
��	
���(
���>�$<�

Fig. 10: The insertion latency of VarFS
and Ceph (log).

��	
���(
���>�$<�

Fig. 11: The data transfer volume of
VarFS over Ceph for insertions.

�6

��

�:

�?

�8

��6

���

��:

��?

��8

8 9 �� ��

��
�

��
��
��
�

�6

��	
���(
���>�$<�

�����

-
%!

Fig. 12: The random write latency of
VarFS and Ceph.

�6

�7

��6

��7

��6

��7

��6

8 9 �� ��

)

	
��
�'

�
��

�

��
��
��

 �
�
��
��
;�
��

��

�
��
�	
#�

�
�A

�

�6

��	
���(
���>�$<�

���
���
�����;�����
����	#�

Fig. 13: The random write latency and
data transfer volume of VarFS over
Ceph.

VI. CONCLUSION

In this paper we have presented a variable-sized object
based file system, VarFS, in which we choose mapping files
into objects by their content. VarFS could minimize objects
to be read and written back by keeping changes to minimal
number of objects. We implemented VarFS based on Ceph and
for random writes it achieves significantly better throughput
and latency than Ceph by 50 times. As part of the future
works, we will explore more efficient content-based mapping
mechanism.

REFERENCES

[1] “Hbase,” http://hbase.apache.org/.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST’10), Lake Tahoe, NV,
May 2010.

[3] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI’06), Seattle, WA, Nov. 2006, pp. 307–320.

[4] “Lustre,” http://lustre.org/.

[5] T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Analysis of hdfs under hbase:
A facebook messages case study,” in Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST’14), Santa Clara,
CA, Feb. 2014, pp. 199–212.

[6] M. Shamma, D. T. Meyer, J. Wires, M. Ivanova, N. C. Hutchinson,
and A. Warfield, “Capo: Recapitulating storage for virtual desktops,”
in Proceedings of the 9th USENIX Conference on File and Stroage
Technologies (FAST’11), San Jose, CA, Feb. 2011.

[7] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum,
“The zettabyte file system,” in the 2nd USENIX Conference on File and
Storage Technologies (FAST’03), San Francisco, CA, March 2003.

[8] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”
IBM Research Division Almaden Research Center and FusionIO, Tech.
Rep., 2012.

[9] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth
network file system,” in Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP’01), Banff, Alberta, Canada, Oct.
2001, pp. 174–187.

[10] M. O. Rabin, “Fingerprinting by random polynomials,” Center for
Research in Computing Technology, Harvard University, Tech. Rep.
TR-15-81, 1981.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), Bolton Landing, NY, Oct. 2003, pp. 29–43.

[12] C. Jermaine, E. Omiecinski, and W. G. Yee, “The partitioned exponen-
tial file for database storage management,” The VLDB Journal, vol. 16,
no. 4, pp. 417–437, Oct. 2007.

[13] C. Jermaine, A. Datta, and E. Omiecinski, “A novel index supporting
high volume data warehouse insertion,” in Proceedings of the 25th
International Conference on Very Large Data Bases (VLDB’99), San
Francisco, CA, Edinburgh, Scotland 1999, pp. 235–246.

[14] S. M. Martin Kersten, “Cracking the database store,” in Proceedings
of the 2nd Biennial Conference on Innovative Data Systems Research
(CIDR’05), Asilomar, CA, Jan. 2005.

[15] S. M. Stratos Idreos, Martin L. Kersten, “Database cracking,” in
Proceedings of the 3rd Biennial Conference on Innovative Data Systems
Research (CIDR’07), Asilomar, CA, Jan. 2007.

153

Authorized licensed use limited to: Wuhan University. Downloaded on September 18,2022 at 06:38:56 UTC from IEEE Xplore. Restrictions apply.

