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Abstract—Hadoop is a popular implementation of the MapReduce framework for running data-intensive jobs on clusters of commodity

servers. Shuffle, the all-to-all input data fetching phase between the map and reduce phase can significantly affect job performance.

However, the shuffle phase and reduce phase are coupled together in Hadoop and the shuffle can only be performed by running the

reduce tasks. This leaves the potential parallelism between multiple waves of map and reduce unexploited and resource wastage in

multi-tenant Hadoop clusters, which significantly delays the completion of jobs in a multi-tenant Hadoop cluster. More importantly,

Hadoop lacks the ability to schedule task efficiently and mitigate the data distribution skew among reduce tasks, which leads to further

degradation of job performance. In this work, we propose to decouple shuffle from reduce tasks and convert it into a platform service

provided by Hadoop. We present iShuffle, a user-transparent shuffle service that pro-actively pushes map output data to nodes via a

novel shuffle-on-write operation and flexibly schedules reduce tasks considering workload balance. Experimental results with

representative workloads and Facebook workload trace show that iShuffle reduces job completion time by as much as 29.6 and

34 percent in single-user and multi-user clusters, respectively.

Index Terms—MapReduce, shuffle, dataskew, task scheduling
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1 INTRODUCTION

HADOOP is a popular open-source implementation of the
MapReduce programming model for processing large

volumes of data in parallel [13]. Each job in Hadoop consists
of two dependent phases, each of which contains multiple
user-defined map or reduce tasks. These tasks are distributed
independently onto multiple nodes for parallel execution.
The decentralized execution model is essential to Hadoop’s
scalability to a large number of nodes as map computations
can be placed near their input data stored on individual
nodes and there is no communication between map tasks.

There are many existing studies focusing on improving
the performance of map tasks. For example, work has been
done to preserve locality via map scheduling [36] or input
replication [9], as the data locality is critical to map perfor-
mance. Others also designed interference [11] and topol-
ogy [22] aware scheduling algorithms for map tasks. While
there is extensive work exploiting the parallelism and
improving the efficiency in map tasks, only a few studies
have been devoted to expedite reduce tasks.

The shuffle phase performs an all-to-all copying of inter-
mediate data from the map phase to the reduce phase. It
involves intensive communications between nodes and can
significantly delay job completion. Hadoop employs slow-
start that strives to hide the latency incurred by the shuffle

phase by starting reduce tasks as soon as map output files
are available. Existing work tries to overlap shuffle with
map by proactively sending map output [12] or fetching
map output in a globally sorted order [33].

Unfortunately, the coupling of shuffle and reduce phases
in a reduce task presents challenges to attaining high perfor-
mance in multi-tenant environments. First, the fairness
between multiple jobs is enforced by limiting the number of
concurrent tasks of each job, which means the reduce tasks
may not be able to run at the same time. In fact, the reduce
tasks in a multi-tenant cluster tend to run in multiple wave.
The shuffle phase will not start utill the corresponding
reduce task is scheduled to run, and only the first wave of
reduce can be overlapped with map, leaving the potential
parallelism in shuffle unexploited. Second, tasks scheduling
in Hadoop is oblivious of the data distribution skew among
reduce tasks [14], [15], [20], [21]. Machines running shuffle-
heavy reduce tasks become bottlenecks. Finally, one user’s
long-running shuffle may occupy the reduce slots that
would otherwise be used more efficiently by other users,
lowering the utilization and throughput of the cluster.

In this paper, we propose to decouple the shuffle phase
from reduce tasks and convert it into a platform service pro-
vided by Hadoop. Therefore, the shuffle phase can start
without schedule any reduce task. We present iShuffle, a
user-transparent shuffle service that overlaps the data shuf-
fling of any reduce task with the map phase, addresses the
input data skew in reduce tasks, and enables efficient
reduce scheduling. iShuffle features a number of key
designs: (1) proactive and deterministic pushing shuffled
data from map to Hadoop nodes when map output files are
materialized to local file systems, a.k.a, shuffle-on-write. (2)
automatic predicting reduce execution time based on the
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input partition size and placing the shuffled data to mitigate
the partition skew and to avoid hotspots. (3) binding reduce
tasks with data partitions only when reduce is scheduled to
realize the load balancing enabled by the partition place-
ment. (4) preemptive reduce scheduling to ensure fairness
between the reduce tasks from different MapReduce jobs.

We implemented iShuffle on a 32-node Hadoop cluster
and evaluated its benefits using benchmark jobs from the
Purdue MapReduce Benchmark Suite (PUMA) [3] and the
HiBench [2] with datasets collected from real applications.
We compared the performance of iShuffle running both
shuffle-heavy and shuffle-light workloads with that of stock
Hadoop and three recently proposed approach (i.e.,
Hadoop-A in [33], DynMR in [29] and Sailfish in [25]).
Experimental results show that iShuffle reduces job comple-
tion time by 29.6, 28.8, and 22.4 percent compared with
stock Hadoop, Hadoop-A and DynMR, respectively. We
also used the workload trace from Facebook’s Hadoop clus-
ter and evaluated iShuffle in a multi-user environment. The
results show that iShuffle significantly improves the com-
pletion time for regular jobs without affecting the perfor-
mance of map-only jobs. iShuffle also outperform Sailfish
in multi-tenant environments with 16 percent less perfor-
mance impact on small jobs.

A preliminary version of this paper appeared in the Proc.
of USENIX ICAC’2013 [19]. It was awarded the best paper.
In this significantly extended manuscript, we have re-
designed and developed iShuffle with multi-user support
and preemptive reduce scheduling. We have updated the
existing experiments with more comprehensive bench-
marks and compared the performance of iShuffle with a
recently published approach. We have also performed new
experiments on a multi-user Hadoop cluster using work-
load trace from Facebook.

The rest of this paper is organized as follows. Section 2
introduces the background, discusses existing issues, and
presents a motivating example. Section 3 elaborates iShuffle’s
key designs. Section 4 gives the testbed setup, experimental
results and analysis. Related work is presented in Section 5.
We conclude this paper in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Hadoop MapReduce Framework

The data processing in MapReduce [13] model is expressed
as two functions: map and reduce. The map function takes an
input pair and produces a list of intermediate key/value
pairs. The intermediate values associated with the same key
are grouped together and then passed to the same reduce
function via shuffle, an all-map-to-all-reduce communica-
tion. The reduce function processes the intermediate key
with the list of its values and generate the final results.

Hadoop’s implementation of the MapReduce program-
ming model pipelines the data processing and provides fault
tolerance. Fig. 1 shows an overview of job execution in
Hadoop. The Hadoop runtime partitions the input data and
distributes map tasks onto individual cluster nodes for paral-
lel execution. Each map task processes a logical split of the
input data that resides on theHadoopDistributed File System
(HDFS) and applies the user-defined map function on each
input record. The map outputs are partitioned according to

the number of reduce tasks and combined into keyswith asso-
ciated lists of values. Amap task temporarily stores its output
in a circular buffer and writes the output files to local disk
every time the buffer becomes full (i.e., buffer spill).

A reduce task consists of two phases: shuffle and reduce.
The shuffle phase fetches the map outputs associated with a
reduce task from multiple nodes and merges them into one
reduce input. An external merge sort algorithm is used
when the intermediate data is too large to fit in memory.
Finally, a reduce task applies the user-defined reduce func-
tion on the reduce input and writes the final result to HDFS.
The reduce phase cannot start until all the map phases have
finished as the reduce function depends on the output gen-
erated by all the map tasks. To overlap the execution of map
and reduce, Hadoop allows an early start of the shuffle
phase (by scheduling the corresponding reduce task) as
soon as 5 percent of the map tasks have finished.

2.2 Input Data Skew Among Reduce Tasks

The output of map tasks is a collection of intermediate keys
and their associated value lists. Hadoop organizes each out-
put file into partitions, one per reduce task and each contain-
ing a different subset of the intermediate key space. Hadoop
determines which partition a key-value pair will go to by
computing a hash value. Since the intermediate output of the
same key are always assigned to the same partition, skew in
the input data setwill result in disparity in the partition sizes.
Such a partitioning skew is observed in many applications
running in Hadoop [14], [20], [21]. Although Hadoop can
aggregate multiple keys in the same partition for one reduce
task to process, the default hash-based partitioner lacks the
ability to balance partitions for uniform workload distribu-
tion. Some user-defined partitioner may mitigate the skew
but does not guarantee an even data distribution among
reduce tasks. As a result, some reduce tasks take significant
longer time to finish, slowing down the job.

2.3 Inflexible Scheduling of Reduce Tasks

Reduce tasks are created and assigned a task ID by Hadoop
during the initialization of a job. The task ID is then used to
identify the associated partition in each map output file. For
example, shuffle fetches the partition that matches the
reduce ID from all map tasks. When there are reduce slots
available, reduce tasks are scheduled in the ascending order
of their task IDs. Although such a design simplifies task
management, it may lead to long job completion time. Due
to the strict scheduling order, it is difficult to prioritize
reduce tasks that are predicted to run longer than others.

Fig. 1. An overview of data processing in Hadoop MapReduce
framework.
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Further, partitions required by a reduce task may not be
generated at the time it is scheduled, occupying the reduce
slot and wasting cluster cycles which would otherwise be
used by another reduce with all partitions ready.

2.4 Tight Coupling of Shuffle and Reduce

As part of a reduce task, shuffle cannot start until the corre-
sponding reduce is scheduled. Besides the inefficiency of
job execution, the coupling of shuffle and reduce also leaves
the potential parallelism between within and between jobs
unexploited. In a production environment, a MapReduce
cluster is shared by many users and multiple jobs [36]. Each
job only gets a portion of the execution slots and often
requires multiple execution waves, each of which consists
of one round of map or reduce tasks. Because of the cou-
pling, data shuffling in later reduce waves cannot be over-
lapped with map waves.

Fig. 2 shows the execution of one tera-sort job with 4 GB
dataset in a 10-node Hadoop cluster. Each node was config-
ured with one map slot and one reduce slot. The job was
divided into 32 map tasks and 32 reduce tasks [13], [31],
resulting in four map and reduce waves. We use the dura-
tion of the shuffle phase between last execution wave and
next reduce phase, termed as shuffle delay, to quantify how
data shuffling affects the completion of reduce tasks. Due to
the overlapped execution, the first reduce wave experienced
a shuffle delay of 11 seconds. Unfortunately, remaining
reduce waves had on average a delay of 23 seconds before
the reduce phase could start. Given that the average length
of the reduce phase was 25 seconds, the reduce waves
would have been completed in less than half the time if the
shuffle delay can be completely overlapped with map.

Fig. 2 also suggests that although the overlapping of
reduce and map reduced the shuffle delay from 23 to 11 sec-
onds, the first reduce wave occupied the slots three times
longer than the following waves. Most time was spent in
the shuffle phase waiting for the completion of map tasks.
In production systems, allowing other jobs to use these slots
may outweigh the benefits brought by the overlapped
execution.

The map slots that are freed after the completion of all
map tasks may seem to be usable for the second and the
third wave of reduce tasks. But, map slots and reduce slots
are two different resources in Hadoop. The default design
does not allow running reduce tasks on map slots or vice
versa. Most importantly, in multi-tenant Hadoop clusters,
the map slots that released by one job may be occupied by

another job. In this case, it it also hard to reuse the map slots
for reduce tasks.

These observations revealed the negative impacts of cou-
pling shuffle and reduce on job execution and motivated us
to explore a new shuffling design for Hadoop. We found
that decoupling shuffle from reduce provides a number of
benefits. We are can shuffle the data for all reduce tasks
regardless the number of concurrent reduce tasks, which
makes the task scheduling approximates the ideal case in
Fig. 2. It also enables skew-aware placement of shuffled
data, flexible scheduling of reduce tasks, and complete over-
lapping the shuffle phase with map tasks. In Section 3, we
present iShuffle, a decoupled shuffle service for Hadoop.

3 ISHUFFLE DESIGN

We propose iShuffle, a job-independent shuffle service that
pushes the map output to its designated reduce node. It
decouples shuffle and reduce, and allows shuffle to be per-
formed independently from reduce. It predicts the map out-
put partition sizes and automatically balances the
placement of map output partitions across nodes. iShuffle
binds reduce IDs with partition IDs lazily at the time reduce
tasks are scheduled, allowing flexible scheduling of reduce
tasks.

3.1 Overview

Fig. 3 shows the architecture of iShuffle. iShuffle consists of
three components: shuffler, shuffle manager, and task scheduler.
The shuffler is a background thread that collects intermedi-
ate data generated by map tasks and predicts the size of
individual partitions to guide the partition placement. The
shuffle manager analyses the partition sizes reported by all
shufflers and decides the destination of each partition. The
shuffle manager and shufflers are organized in a layered
structure which is similar to Hadoop’s JobTracker and
TaskTrackers. The task scheduler extends existing
Hadoop schedulers to support flexible scheduling of reduce
tasks. We briefly describe some major features of iShuffle.

User-Transparent Shuffle Service. A major requirement of
iShuffle design is the compatibility to existing Hadoop jobs.
To this end, we design shufflers and the shuffle manager as
job-independent components, which are responsible for col-
lecting and distributing map output data. This design
allows the cluster administrator to enable or disable iShuffle
through the options in the configuration files. Any user job
can use iShuffle service without modifications.

Shuffle-on-Write. The shuffler implements a shuffle-on-
write operation that proactively pushes the map output

Fig. 2. Tera-sort job execution.

Fig. 3. The architecture of iShuffle.
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data to different nodes for future reduce tasks every time
such data is written to local disks. The shuffling of all map
output data can be performed before the execution of
reduce tasks.

Automated Map Output Placement. The shuffle manager
monitors the growth rate of each partition and predicts the
final size of the partitions on all slave nodes. With this infor-
mation, an automated partition placement algorithm is
used to determine the destination for each map output par-
tition. The objective is to balance the global data distribution
and mitigate the non-uniformity reduce execution time.

Flexible Dispatching of Reduce Tasks. The task scheduler in
iShuffle assigns a partition of a reduce task only when the
task is dispatched to a node with available slots. To mini-
mize reduce execution time, iShuffle always associates par-
titions that are already resident on the reduce node to the
scheduled reduce.

Preemptive Reduce Scheduling. The fair scheduler in iShuffle
supports preemption of reduce tasks. To ensure themax-min
fairness, the scheduler pauses some running reduce tasks to
make room for incoming jobs. To reduce the performance
impact of the preemption, iShuffle employs a checkpoint-on-
preemption mechanism and a preemptive selection algo-
rithm that exploits the unfilled execution slots of a job.

3.2 Shuffle-on-Write

iShuffle decouples shuffle from a reduce task and implements
data shuffling as a platform service. This allows the shuffle
phase to be performed independently from map and reduce
tasks. The introduction of iShuffle to the Hadoop environ-
ment presents two challenges: user transparency and fault
tolerance.

Besides user-defined map and reduce functions, Hadoop
allows customized partitioner and combiner. To ensure that
iShuffle is user-transparent and does not require any change
to the existing MapReduce jobs, we design the Shuffler as an
independent component in the TaskTracker. It takes
input from the combiner, the last user-defined component
in map tasks, performs data shuffling and provides input
data for reduce tasks. The shuffler performs data shuffling
every time the output data is written to local disks by map
tasks, thus we name the operation shuffle-on-write.

Fig. 4 shows the workflow of the Shuffler. It has three
stages: (1) map output collection (step �1 �2 ); (2) data shuf-
fling (step�3�4�5�6 ); (3) map output merging (step�7�8 ).

Map Output Collection. The shuffler contains multiple
DataSpillHandler, one per map task, to collect map

output that has been written to local disks. Map tasks write
the stored partitions to the local file system when a spill of
the in-memory buffer occurs. We intercept the writer class
IFile.Writer used in the spill thread and add a Data-

SpillHandler class to it. While the default writer writing
a spill to local disk, the DataSpillHandler copies the
spill to a circular buffer, DataSpillQueue, from where
data is shuffled/dispatched to different nodes in Hadoop.
A map output has two paths for writing output. One path is
writing output directly, the other path is writing through
combiner, which combines key-value pairs before writing
them to disk. Intercepting the output in the spill thread ena-
bles iShuffle to handle the output for both paths. During
output collection, the DataSizePredictor monitors
input data sizes and resulted partition sizes, and reports
these statistics to the shuffle manager.

Data Shuffling. The shuffler proactively pushes data parti-
tions to nodes where reduce tasks will be launched. Specifi-
cally, a DataDispatcher reads a partition from the
DataSpillQueue and queries the shuffle manager for its
destination. Based on the placement decision, a partition
can be dispatched to the shuffler on a different node or to
the local merger in the same shuffler.

Map Output Merging. The map output data shuffled at
different times needs to be merged to a single reduce input
file and sorted by key before a reduce task can use it. The
local merger receives remotely and locally shuffled data
and merges the partitions belonging to the same reduce task
into one reduce input. To ensure correctness, the merger

only merges partitions from successfully finished map
tasks.

3.3 Balanced Partition Placement

The shuffle-on-write workflow relies on key information
about the partition placement for each running job. The
objective of partition placement is to balance the distribu-
tion of map output data across different nodes, so that the
reduce workloads on different nodes are even. The optimal
partition placement can be determined when the sizes of all
partitions are known. However, this requires that all map
tasks are finished when making the placement decisions,
which effectively enforce a serialization between map tasks
and the shuffle phase. iShuffle estimates the final partition
sizes based on the amount of processed input data and cur-
rent partition size, and uses the estimation to guide partition
placement.

3.3.1 Prediction of Partition Sizes

The size of a map output partition depends on the size of its
input dataset, the map function, and the partitioner. The
final size of each partition can be predicted with decent
accuracy during the early stage of job execution [28]. Verma
et al. [32], found that the ratio of map output size and input
size, also known as map selectivity, is invariant given the
same job configuration. As such, the partition size can be
determined using the metric of map selectivity and input
data size. The shuffle manager monitors the execution of
individual map tasks and estimates the map selectivity of a
job by building a mathematical model between input and
output sizes.

Fig. 4. Workflow of Shuffle-on-Write.
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For a given job, the input dataset is divided into a num-
ber of logical splits, one per map task. Since individual map
tasks run the same map function, each map task shares the
same map selectivity with the overall job execution. By
observing the execution of map tasks, where a number of
input/output size pairs are collected, shuffle manager
builds a model estimating the map selectivity metric. Shuf-
fle manager makes k observations of the size of each map
output partition. As suggested in [32], it derives a linear
model between partition size and input data size:
pi;j ¼ aj þ bj �Di, where pi;j is the jth partition size in the ith
observation and Di is the corresponding input size. We use
linear regression to obtain the parameters for m partitions,
one per reduce task. In practice, we measure the partition
size and the input size from the beginning of the job and
keep updating them every one second. Since MapReduce
jobs contain many more map tasks than reduce tasks (as
shown in Table 2, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2016.2587645), we are able to collect suf-
ficient samples for building the model. Once a model is
obtained, the final size of a map output partition is calcu-
lated by replacing Di with the actual input size of the map
task.

3.3.2 Partition Placement

With predicted partition sizes, the shuffle manager deter-
mines the optimal partition placement that balances reduce
workload on different nodes. Because the execution time of
a reduce task is linear to its input size, evenly placing the
partitions leads to balanced workload. Formally, the parti-
tion placement problem can be formulated as: given m map
output partitions with sizes of p1; p2; . . . ; pm, find the place-
ment on n nodes, S1; S2; . . . ; Sn, that minimizes the place-
ment difference

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

m�
X
j2Si

pj

 !vuut ; (1)

where m is the average data size on one node.

Algorithm 1. Partition Placement

1: Variables: List of partitions p, list of nodes, has the size of
all allocated partitions S.

2:
3: sort list p in descending order of partition sizes
4: for i 1 tom do
5: min node S½1�
6: for j 1 to n do
7: if S½j�:size < min node:size then
8: min node S½j�
9: end if
10: end for
11: min node:placeðp½i�Þ
12: end for

Partition placement problem can be viewed as the load
balancing problem in multiprocessor systems [17] and is
thus NP-hard. While the optimal solution can be prohibi-
tively expensive to attain, we propose a heuristic-based

approach to approximate an optimal placement. Detail of
this approach is presented in Algorithm 1. This algorithm is
based on two heuristics, the largest partition first for picking
partitions and the less workload first for picking destination
nodes. It sorts the partitions in the descending order of size
and assigns the largest partition to the nodes with the least
aggregate data size. It repeats until all the partitions are
assigned.

3.4 Flexible Reduce Dispatching

In Hadoop, reduce tasks are assigned map output parti-
tions statically during job initialization. When there are
reduce slots available on idle nodes, reduce tasks are dis-
patched according to the ascending order of their task IDs.
This restriction on reduce task dispatching leads to ineffi-
cient execution where reduces that are waiting for map
tasks to finish occupy the slots for a long time. Because iSh-
uffle proactively pushes output partitions to nodes, it
requires that reduce tasks are launched on nodes that hold
the corresponding shuffled partitions. To this end, iShuffle
breaks the binding of reduce tasks and map output parti-
tions and provides flexible reduce dispatching.

An intuitive approach for flexible reduce dispatching is
to traverse the task queue and find a reduce that has shuf-
fled data on the requesting node. However, this approach
does not guarantee that there is always a “local” reduce
available for dispatching. iShuffle employs a different
approach that assigns partitions to reduce tasks at the time
of dispatching. For single-user clusters, we modified
Hadoop’s FIFO scheduler to support the runtime task-parti-
tion binding. When a node with available reduce slots
requests for new reduce tasks, the task scheduler first
check with the shuffle manager to obtain the list of parti-
tions that reside on this node. The scheduler picks the first
partition in the list and associates its ID with the first reduce
task in the waiting queue. The selected reduce task is then
launched on the node. As such, all reduce tasks are guaran-
teed to have local access to their input data.

For multi-user clusters with heterogeneous workloads,
we add the support for runtime task-partition association to
the Hadoop Fair Scheduler (HFS). The minimum fair share
allocated to individual users can negatively affect the effi-
ciency of iShuffle as reduce tasks may be launched on
remote nodes to enforce fairness. We disable such fairness
enforcement for reduce tasks to support more flexible task
dispatching. This allows some users to temporarily run
more reduce tasks than others. We rely on the following
designs to reduce unfairness among users and avoid starva-
tion. First, the fair share of map tasks is still in effect,
guaranteeing fair chances for users to generate map output
partitions. Second, while records are sorted by key within
each partition after shuffling, partitions belonging to differ-
ent users are placed in the list with random order, giving
each user an equal opportunity to launch reduce tasks.
Finally and most importantly, reduce tasks are started only
when all their input data is available. This may temporarily
violates fairness, but prevents wasted cluster cycles spent in
waiting for unfinished maps and results in more efficient
job execution. We further employed the preemptive reduce
scheduling to minimized the fairness impact of disabling
fair share for reduce tasks.
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3.5 Preemptive Reduce Scheduling

The random ordering of partitions in the reduce phase
improves the fairness between launched MapReduce jobs.
But it does not effectively prevent small jobs from being
starved by long-running large jobs. Since the execution time
of small jobs are short, letting reduce tasks of small jobs pre-
empt long-running jobs does not being significant overhead.
This would ensure the timely scheduling of small jobs. Pre-
emption requires temporary suspension of a running task
and resumes it at a later time. Modern operating systems
support preemptive task scheduling by providing a way to
save the state of a running task so that it can be resumed
from where it is preempted. However, it is difficult to pro-
vide task preemption in MapReduce. There is no checkpoint
or snapshot feature in popular frameworks such as Hadoop.
Further, the coupling of the shuffleand reduce phases makes
it difficult to implement preemption.

Algorithm 2. Preemptee Selection

1: Variables: Jobs that have more reduce running than their
fair shares Lover; Jobs that running reduces at their fair
shares Lfair; rk processing rate of task k; wj number of task
waves of job j; nj remaining tasks of job j; sj number of
task slots of job j;

2:
3: update Lover and Lfair.
4: if Lover is not empty then
5: GetPreemptee(Lover)
6: else
7: GetPreemptee(Lfair)
8: end if
9:
10: function GETPREEMPTEE (L)
11: for each job j in L do
12: for each task k in j do
13: tk =

Dremain;k

rk
14: end for
15: candidate ¼ argmaxkðtkÞ
16: if

nj
sj

l m
¼ njþ1

sj�1
l m

then

17: return candidate
18: end if
19: end for
20: end function

The decoupling of shuffle and reduce in iShuffle pro-
vides an easy way to preempt reduce tasks. Decoupled
from the shuffle phase, reduce tasks simply read pushed
intermediate data from local disks and output to local
HDFS. Thus, the preemption of reduce tasks does not need
to save the state of the complex shuffle phase. iShuffle first
implements a checkpoint-on-preemption mechanism to
save the state of reduce tasks and modifies the Hadoop Fair
Scheduler to select a proper candidate of the preemption.

Checkpoint-on-Preemption. Since we only need to save
reduce state upon the preemption, tracking task execution
and making checkpoints throughout the life time of a
reduce task is unnecessary. To avoid tracking on-the-fly
reduce state, we only save the state that has been committed
to persistent storage from preempted reduce tasks. Each
time a output buffer is full, the reduce task flushes the cur-
rent key and value list to HDFS. When iShuffle receives a

preemption request, it first flushes the output buffer to
HDFS. Then it saves the file offset of the record that is being
processed in the checkpoint. Next, iShuffle suspends the
reduce task and finishes the preemption. The preempted
reduce is later restarted from the checkpoint. The process is
resumed by seeking to the offset of last unprocessed record.
It does not need to scan or reprocess the records that have
already been committed to the HDFS.

Preemptee Selection. To enforce fairness among multiple
jobs, MapReduce scheduler needs to select preemptees
from the jobs that are running more tasks than their fair
shares. The selection of preemptees has significant impact
on overall job performance. Some existing systems select
the task with the longest remaining time or largest remain-
ing data as the preemptee to reduce the impact on the job
completion time [34]. But the tasks of a job often finishes in
multiple waves in a multi-user Hadoop cluster, which com-
plicates the potential performance impact of preemption.
When the tasks of the last wave filled all execution slots, the
preemption of a task may create an additional wave, which
can significantly prolong job completion. On the other
hand, if the last wave has unfilled execution slots, the pre-
empted task can be combined with the last wave of tasks
and avoid the overhead of the additional wave.

iShuffle exploit the unfilled execution slots in the last
wave and reduce the performance impact of preemptive
reduce scheduling. It carefully selects preemptees (tasks)
that would not cause extra waves. Algorithm 2 shows the
details of how iShuffle selects the preemptee. All running
jobs are divided into two categories. The over category con-
tains jobs that run more tasks than their fair shares. The rest
of jobs are put in the fair category. Whenever the scheduler
needs to select a preemptee, it first calculates the fair share
and updates the list of over and fair jobs. If the list of over
jobs is not empty, the algorithm will invoke the Get-

Preemptee function to obtain a task from these jobs and
use it as the preemptee. When there are no over jobs, the
algorithm will choose the preemptee from fair jobs using the
same function. The GetPreemptee function works in two
steps. First, it estimates the remaining time of all tasks for
each job using the task progress rate and the size of remain-
ing input data. The task with the longest remaining time is
picked as the preemptee candidate. Then, it calculates the
number of tasks waves after the preemption. If the number
of task waves of a job does not increase after preemption,
the algorithm will choose this job and use its preemptee can-
didate as the final preemptee.

3.6 Design Trade-Offs of iShuffle

Fault Tolerance. Since iShuffle alters the workflow of
Hadoop, it may affect fault tolerance mechanisms in
Hadoop. Hadoop employs a detect-restart fault tolerance
model that re-launches failed tasks on different nodes. The
failed task is rerun from the beginning, and the data gener-
ated by the failed run is discarded. For map task, this is
easy as the rescheduled task only needs to read input from
HDFS. For reduce tasks, the shuffle phase in the reduce task
will re-fetch the map output from all nodes and merge them
as reduce input.

In iShuffle, the recovery workflow for map tasks remains
the same while reduce recovery needs some changes. The
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reduce task can read the input file from local disk, if it is
scheduled on the same node as the failed task. When the
reduce task is scheduled on a different node, the shuffler
need to copy the shuffled data from a remote node (if the
remote copy is still available), or redo the shuffle (if the
remote copy is gone due to a node failure). This complexity
of reduce recovery workflow helps reduce the data move-
ment when the task is restarted on the same node because it
does not need reshuffle. In the worst case where reshuffling
is required, iShuffle does not incur overhead compared to
conventional Hadoop.

Speculative Execution. Speculative execution is introduced
in the original design of MapReduce to address stragglers,
which are usually due to faulty hardware, misconfigura-
tions, and resource contentions. Running a backup task on a
different node is likely to complete the task faster, thereby
mitigating the overall job slowdown due to these stragglers.

Since there may be multiple copies of the same tasks run-
ning simultaneously, Hadoop keeps the output of each task
separately. As iShuffle shuffles and merges map output as
soon as it is generated, we need sophisticated output de-
duplication to support speculative execution. Currently,
iShuffle does not support speculative execution.

Nevertheless, in a multi-tenant MapReduce cluster, the
scheduler is often optimized for multiple factors, such as
fairness between users and cluster utilization. In this case, a
job may not have any available slot for backup tasks. More-
over, speculative execution can be triggered by temporal
performance fluctuation, especially in virtualized clusters.
Thus, the common practice is to disable speculative execu-
tion [4]. Not supporting speculative execution does not
poses limitation to iShuffle’s usability in multi-tenant
clusters.

Map Overhead. Decoupling shuffle and reduce, and using
Shuffle-on-Write technique essentially moves the shuffle
operation to the map phase. It is expected to have some per-
formance impact on map tasks. However, the shuffler is
mainly performing I/O operations, and should not interfere
with map tasks substantially. We present overhead analysis
on map tasks in Section 4.6.

4 EVALUATION

The performance evaluation of iShuffle is done in two parts.
First, we use a set of representative MapReduce jobs to
study the reduction in shuffle delay, improvement of per-
formance. Then, we use the workload trace from Facebook
to evaluate the performance of iShuffle on real-world work-
loads. We also evaluate the performance impact of the auto-
mated partition placement with different balancing
approaches. We further explore the effectiveness of the flex-
ible reduce dispatching in shared Hadoop environment.

4.1 Testbed Setup

Our testbed was a 32-node Hadoop cluster. Each node had
one 2.4 GHz 4-core Intel Xeon E5530 processor and 4 GB
memory. All nodes were interconnected by a Gigabit Ether-
net. We deployed Hadoop v1.1.1 on Ubuntu Linux with ker-
nel 2.6.24. Two nodes were configured as the JobTracker

and NameNode, respectively. The rest 30 nodes were config-
ured as slave nodes. We set the HDFS block size to its

default value 64 MB. Each slave node was configured with
four map slots and four reduce slots, resulting in a total
capacity of running 120 map and 120 reduce tasks simulta-
neously in the cluster.

We compare iShuffle with three different approaches.
The first approach is Hadoop-A [33]. It enables reduce tasks
to access map output files on remote disks through the net-
work. By using a priority queue-based merge sort algo-
rithm, Hadoop-A eliminates repetitive merge and disk
accesses, and removes the serialization between the shuffle
and reduce phases. However, Hadoop-A requires the
remote direct memory access (RDMA) feature on Infiniband
interconnections for fast remote disk access. We imple-
mented Hadoop-A using remote procedure calls on our
testbed with Gigabit Ethernet and compared its perfor-
mance with iShuffle on commodity hardware.

The second approach is DynMR [29]. It replaces the map
and reduce task execution slots with a unified task execu-
tion slots. During the job execution, map tasks will occupy
all available execution slots, and reduce tasks only preempt
map tasks when there is enough data to shuffle. The inter-
leaved execution of map and reduce tasks allows the map
output data to be shuffled as soon as possible and reduces
the shuffle delay. However, DynMR does not decouple
shuffle and reduce, the shuffle cannot be fully overlapped
with map tasks. With the unified task execution slots, a
reduce task can also preempt the map task of a map only
job. This can result in significant performance interference
in multi-user Hadoop clusters.

The third approach is Sailfish [25]. It proposed I-File, a data
aggregation system for intermediate data. It is implemented
on top of Kosmos File System. By saving map output in I-File,
Sailfish is also able to overlap the shuffle phase and map
phase. In order to mitigate the data skew, Sailfish repartitions
the intermediate data and dynamically determined the num-
ber of reduce tasks.However, Sailfish lacks the support of pre-
emptive reduce scheduling. In a multi-tenant environment,
the long running reduce tasks for large jobs may starve the
small jobs, and Sailfish has notway tomitigate it.

4.2 Workloads

Wemainly used the PurdueMapReduce Benchmark Suite [3]
to compose workloads for evaluation. In order to cover the
area PUMA benchmark suite does not cover some new but
popular applications such graph processing and machine
learning. Thus we also include the pagerank and bayes bench-
mark jobs from theHiBench benchmark suite [2] to provide a
more comprehensive collection of benchmark jobs.

The PUMA and HiBench benchmark jobs can be divided
into two categories: shuffle-heavy and shuffle-light. Shuffle-
heavy benchmarks are self-join, tera-sort, k-means, inverted-
index, term-vector, wordcount, pagerank, and bayes. They have
have high map selectivity and generate a large volume of
data to be exchanged between map and reduce. Their inter-
mediate data size ranges from 32 GB to 300 GB. Thus, such
benchmarks are sensitive to optimizations on the shuffle
phase. For shuffle-light benchmarks, such as histogram-
movies, histogram-ratings, and grep, there is little data to be
shuffled. We used both benchmark types to evaluate the
effectiveness of iShuffle and its overhead on workloads
with little communications.
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For experiments with multi-user environment, we used
the Statistical Workload Injector for MapReduce (SWIM) [5]
to replay the trace from Facebook [10]. We have include the
details of the benchmark jobs in Appendix A, available in
the online supplemental material.

4.3 Reducing Shuffle Delay

Recall that we defined shuffle delay as the duration between
the last wave of execution and the next reduce wave. Shuffle
delay measures the shuffle period that cannot be over-
lapped with the previous wave. The smaller the shuffle
delay, the more efficient the shuffling scheme. We ran tera-
sort on stock Hadoop, Hadoop-A, DynMR, Sailfish and iSh-
uffle, and recorded the start and completion times of each
map, shuffle and reduce phase.

Fig. 5 shows the trace of the tera-sort job execution under
different approaches. The X-axis is the time span of job exe-
cution and Y -axis represents the map and reduce slots. The
results show that iShuffle had the best performance with
29.6, 20.8, and 22.4 percent shorter job execution time than
stock Hadoop, Hadoop-A and DynMR, respectively. As
shown in Fig. 5, there is a significant delay of the reduce
phase for every reduce task in stock Hadoop. Due to proac-
tive placement of map output partitions, iShuffle had almost
no shuffle delays. Note that Hadoop-A also significantly
reduced shuffle delay because it operates on globally sorted
partitions and can greatly overlap the shuffle and reduce
phase.

iShuffle outperformed Hadoop-A on our testbed for two
reasons. First, the building of the priority queue poses extra
delay, e.g., the shuffle delay before the second and third
reduce waves in Hadoop-A, to each reduce task. Second,
the remote disk access in an Ethernet environment is signifi-
cant slower than that in an Infiniband network, which leads
to much longer reduce phases in Hadoop-A.

iShuffle also significantly outperformed DynMR. DynMR
does not decouple shuffle and reduce, which still requires
reduce tasks to be scheduled to perform shuffle. In order to
reduce the shuffle delay, DynMR used interleaved execu-
tion between map and reduce tasks. The reduce tasks can
preempt the map tasks, so that the intermediate data can be
shuffled as soon as they are generated. But it also prolongs
the completion time of all map tasks. In iShuffle, the inde-
pendent shuffler can work with the need of scheduling
reduce tasks or interrupt map tasks. It is able to fully over-
lap shuffle with map tasks.

The performance of iShuffle and Sailfish are close in this
experiment. Both approaches overlapped the shuffle phase
with the map phase. However, due to the completion time of
the map phase in Sailfish is slightly longer than it in iShuffle,
which results increases the job completion time in Sailfish.
We discuss the overhead tomap tasks later in Section 4.6.

4.4 Reducing Job Completion Time

We study the effectiveness of iShuffle in reducing overall
job completion time with more comprehensive benchmarks.
We use the job completion time in stock Hadoop implemen-
tation as the baseline and compare the normalized perfor-
mance of iShuffle, Sailfish, DynMR and Hadoop-A. Fig. 6
shows the normalized job completion time of all shuffle-
heavy benchmarks, which are self-join, tera-sort, pagerank,
and bayes. iShuffle outperformed the stock Hadoop by 29.1-
29.6 percent in these four benchmarks iShuffle outper-
formed DynMR by 15.5-15.7 percent. iShuffle outperformed
Hadoop-A by 21.9-22.7 percent in these benchmarks. The
performance of iShuffle in these four benchmarks is similar
to the case in other shuffle-heavy benchmarks. As we
expected, iShuffle and Sailfish performed similarly. The iSh-
uffle achieved only 3-4 percent shorter job completion time
than Sailfish.

Benchmarks like inverted-index, term-vector, and word-
count also fit in the shuffle-heavy category, but the shuffle
volumes are smaller than other shuffle-heavy benchmarks.
These benchmarks had less shuffle delay than other shuffle-
heavy benchmarks simply because there was less data to be

Fig. 5. Execution trace of tera-sort using stock Hadoop, Hadoop-A,
DynMR, Sailfish and iShuffle approaches.

Fig. 6. Job performance using four different approaches.
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copied during the shuffle phase. Therefore, the performance
improvement due to iShuffle was less. iShuffle achieved
15.6-20.3 percent better performance than stock Hadoop
with these benchmarks, respectively. For these benchmarks,
the delay of map tasks in DynMR is significantly reduced
due to the small shuffle volume. Thus DynMR achieved
similar performance as iShuffle did. However, shuffle intro-
duced additional delay to the map phase. The DynMR has
4.8-6.3 percent longer job completion time than iShuffle in
these three benchmarks, respectively. For these bench-
marks, Hadoop-A still gained some performance improve-
ment over stock Hadoop as the reduction on shuffle delay
outweighed the prolonged reduce phase. However, the per-
formance gain was marginal with 5.5-8.6 percent improve-
ment, respectively.

For the shuffle-light benchmarks, the shuffle delay is neg-
ligible. iShuffle, DynMR, and Hadoop-A achieved almost no
improvement over the stock Hadoop.

One special case of the experiments is k-means bench-
mark, which only has six reduce tasks (one reduce wave).
With only one wave of reduce tasks, stock Hadoop is
already good enough at overlapping the shuffle phase with
map tasks, thus it had similar performance as iShuffle and
Sailfish. However, due to the additional delay of remote
disk access, Hadoop-A had longer reduces, thus longer
overall completion time. DynMR also has longer completion
time due the interleaved execution of map and reduce tasks,
which prolongs the completion time of map phase.

To understand the performance of these approaches
under different intermediate data size, we also measured
the job completion time of wordcount with intermediate data

size ranging from 60 to 300 GB. Fig. 7 shows that the job
completion time of all four approaches scales linearly with
the intermediate data size. While the job completion time of
both iShuffle and Sailfish are consistently less than Hadoop-
A and DynMR.

4.5 Reducing Shuffle Delay

The reduction on job completion time is the result of inter-
play of different execution stages in a MapReduce job. To
understand how shuffle delay affects the job performance,
we compare the shuffle delay between these approaches.
Fig. 8 shows the comparison of normalized shuffle delay.
We used the shuffle delay of iShuffle as the base line. The
results agree with the observation we made in previous
experiments. iShuffle was able to reduce the shuffle delay
significantly if the job had large volumes of shuffled data
and multiple reduce waves. DynMR is able to achieve a
shuffle delay that is similar to iShuffle. For benchmarks that
have the largest shuffle-volume, the reductions in shuffle
delay were more than 10� compared with stock Hadoop.
For benchmarks with medium shuffle volume, the improve-
ment on shuffle delay was from 4.5� to 5.5�. Fig. 8 also sug-
gests that iShuffle was on average 2� more effective in
reducing shuffle delay than Hadoop-A. iShuffle and Sailfish
are equally effective on reducing shuffle delay in these
benchmarks.

4.6 Overhead in Map Phase

Although iShuffle, Sailfish and DynMR achieved significant
reduction in shuffle delay, they had quite different job com-
pletion time. We conclude that the difference is due to the
changes in the map completion time. As Fig. 9 shows iShuf-
fle has around 3 percent overhead in map phase due to the
independent shuffler. Although the overhead seems to be
high, it only diminishes the performance gain due to
reduced shuffle delay. Sailfish has 4-6 percent longer map
completion time than iShuffle mainly due to the overhead
introduced in writing map output to a I-File. Sailfish
directly appends each record to its corresponding data
chunk in a distributed file system results in small writes to
multiple data chunks on different servers. It also need to
update the metadata server with the updates. These opera-
tions increase the cost of writing map output. While in iSh-
uffle, the map output is shuffled to the nodes for future
reduce tasks. Each reduce input contains all the keys associ-
ated to one reduce task, thus iShuffle does not have the

Fig. 7. Job completion time with different intermediate data size.

Fig. 8. Shuffle delay due to four different approaches.

Fig. 9. Map completion time due to four different approaches.
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overhead of tracking the key distribution across on multiple
chunk servers. Eventually, this brings less overhead to map
phase in iShuffle. DynMR has 31.4-39.4 percent longer map
completion time than iShuffle in all shuffle-heavy bench-
marks. The reason is that DynMR still needs to schedule
reduce tasks for shuffle, and the interleaved execution of
map and reduce tasks cannot fully overlap the shuffle I/O
with map computation. On the contrary, the map computa-
tion needs to be paused for shuffle I/O. This results in sig-
nificant increase in map completion time and eventually
prolongs the job completion time.

4.7 Multi-User Performance with Facebook Trace

We proposed the preemptive reduce scheduling to improve
scheduling fairness and the job performance for multi-user
Hadoop clusters. First, we show the performance improve-
ment due to the preemptive reduce scheduling. We used
the Statistical Workload Injector for MapReduce [5] to
replay the trace from Facebook [10] to study the perfor-
mance of iShuffle under real-world workloads.

Fig. 12 shows the normalized job completion time of all
ten types of jobs in the Facebook trace. The results show
that the job with high popularity in the trace, such as Job-1
and Job-6, benefit most from using the preemptive reduce
scheduling. For this type of jobs, iShuffle using the preemp-
tive reduce scheduling achieved up to 16 percent shorter job
completion time than using the flexible reduce dispatching
alone. Note that Job-1 has a significant increase in job com-
pletion time when iShuffle is using the flexible reduce
scheduling. This is due to the fact that Job-1 is small in size
and a shuffle-light job usually takes less than one minute to
finish. Thus it barely benefits from the reduction of shuffle
delay, but can be significantly affected by scheduling unfair-
ness because large jobs monopolize the task slots. On the
contrary, the preemptive reduce scheduling allows small
jobs like Job-1 to preempt large jobs so that they can achieve
expected performance.

Using the preemptive reduce scheduling also improves
the performance of shuffle-heavy jobs. For Job-6 to Job-9,
iShuffle with preemptive reduce scheduling achieved up to
14.2 percent shorter job completion time than using the flex-
ible reduce dispatching. Note that Job-10 is a low popularity
(1 in 24,442) long running job. Temporary unfairness in
reduce scheduling does not quite affect its completion time.
Also due to its small shuffle volume, it does not have a long
shuffle delay, which does not benefit from iShuffle.

Second, we compare the performance of iShuffle, Sailfish,
DynMR, Hadoop-A, and stock Hadoop on the Facebook
workload. Fig. 13 shows the normalized job completion
time of all four approaches. For Job-6 to Job-9, iShuffle out-
performed, Sailfish, DynMR, and Hadoop-A by 5, 9.5, and
18.4 percent, respectively. The results with these shuffle-
heavy jobs are consistent as previous experiments. For Job-1
to Job-5, iShuffle only has less than 3 percent overhead in
Job-1 to Job-5, while Sailfish has up to 15 percent overhead
in these jobs. Job-1 to Job-5 are high popularity small jobs.
Sailfish’s performance on these jobs are as the results of star-
vation of these small jobs. Although Sailfish can determine
the ideal number of reduce tasks for a single job in an auto-
mated fashion, is does not consider the fairness in resource
allocation in multi-tenant clusters. The number of reduce

tasks spawned by Sailfish for one large job can easily
exceeds its fair-share of reduce slots. The results is small
jobs are starved because there is no available reduce slot.
Moreover, Sailfish also lacks the abilities, such as preemp-
tive reduce scheduling, that can timely yield the resource
from large jobs to small jobs. It further aggravates perfor-
mance impact of starvation.

iShuffle also outperformed DynMR in these jobs. The
overhead comes from the prolonged completion time of
the map phase. Recall that DynMR requires map tasks to
be paused during shuffle. In multi-user clusters, this not
only affects the performance of regular jobs, but also hurts
the performance of map-only jobs. Map-only jobs do not
have any shuffle delay that can be reduced to offset the
increment in the map completion time due to DynMR.
They will have performance degradation as long as they
share the same cluster with regular jobs. iShuffle overlaps
shuffle I/O with map computation. No map task needs to
be paused in order to do shuffling. Therefore, it improves
the performance of regular jobs without interfering map-
only jobs.

We further compare the performance impact due to dif-
ferent preemptee selection algorithms. We compare iShuffle
with the remaining time/data based preemptee selection
algorithm proposed in [34]. It picks the task with the largest
remaining data and the longest remaining execution time. It
also monitors the predicted completion time of the jobs to
avoid repetitively preempting tasks from the same job.
Fig. 14 shows the performance of different preemptee selec-
tion algorithms. The results show that iShuffle achieved 3-
22 percent shorter job completion time than the remaining
time/data based preemptee selection algorithm did. Since
the remaining time/data based algorithm does not consider
the unfilled slots in the last wave of tasks, it missed the
opportunity to preempt a reduce task with virtually no
overhead to overall job performance.

4.8 Balanced Partition Placement

We have shown that iShuffle effectively hides shuffle
latency by overlapping map tasks and data shuffling. In this
section, we study how the balanced partition placement
affects job performance. To isolate the effect of partition
placement, we first ran benchmarks under stock Hadoop
and recorded dispatching history of reduce tasks. Then, we
configured iShuffle to place partitions on nodes in a way
that leads to the same reduce execution sequence. As such,
job execution enjoys overlapped shuffle provided by iShuf-
fle, but bears the same partitioning skew in stock Hadoop.
We compare the performance with balanced partition place-
ment and stock Hadoop.

Fig. 10 shows the performance improvement due to bal-
anced partition placement. The results show that iShuffle
achieved 8-12 percent performance improvement over stock
Hadoop.We attribute the performance gain to the prediction-
based partition placement that mitigates the partitioning
skew. It prevents straggler tasks from prolonging job execu-
tion time. The partition placement in iShuffle relies on accu-
rate predictions of the individual partition sizes. Fig. 11 shows
the differences between measured partition sizes and the pre-
dicted ones. The results suggest that for all the shuffle-heavy
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benchmarks, iShuffle was able to estimate the final partition
sizewith nomore than 2 percent prediction errors.

4.9 Flexible Reduce Dispatching

We further evaluate the flexible reduce dispatching of iShuf-
fle in a multi-user Hadoop environment. We created multi-
ple workload mixes, each contained two different
MapReduce jobs. We ran one workload at a time with two
jobs sharing the Hadoop cluster. We modified the Hadoop
Fair Scheduler (i.e., iShuffle w/HFS_mod) to support runtime
task-partition binding. For comparison, we also study the
performance of iShuffle with the original HFS that enforces
a minimum fair share on reduce tasks (i.e., iShuffle w/HFS)
and iShuffle running a single job on a dedicated cluster (i.e.,
Separate iShuffle).

The first experiment used the combination of a shuffle-
heavy job and a shuffle-light job. Fig. 15 shows the result of
workload mix of tera-sort and histogram-movies. The results
suggest that the modified HFS outperformed the original
HFS by 16 and 25 percent for tera-sort and histogram-movies,
respectively. Unlike the original HFS, which guarantees
max-min fairness to jobs, iShuffle allows the reduce of one
job to use more reduce slots. iShuffle prioritizes shuffle-light
jobs because the execution time of their reduce tasks is
short. Allowing shuffle-light jobs to run with more slots
boosted their performance significantly. Although shuffle-
heavy jobs suffered unfairness to a certain degree, their
overall performance under the modified HFS was still better
than that under the original HFS.

Next, we perform the experiment with two shuffle-heavy
jobs. Fig. 16 shows the performance of tera-sort and inverted-
index. It shows that iShuffle improved job execution times by
8 and 23 percent over the original HFS in these two

Fig. 10. Performance of automated map output placement.

Fig. 11. Accuracy of iShuffle partition size prediction.

Fig. 12. Multi-user performance using flexible reduce dispatching and
preemptive reduce scheduling.

Fig. 13. Job performance due to different approaches on a multi-user
Hadoop cluster.

Fig. 14. Job completion time due to different preemptee selection
algorithms.

Fig. 15. Performance of job mix of tera-sort and histogram-movies.
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benchmarks. Although the size of input datasets of these two
benchmarks are similar, inverted-index has a smaller shuffle
volume. Therefore, its reduce tasks can be started earlier as
their partitions required less time to shuffle. tera-sort had less
improvement in this scenario because some of its reduce
tasks are delayed by inverted-index. Table 1 shows more
results of iShuffle with heterogeneous workloads compared
with stock Hadoop. For most workload mixes with two jobs,
iShuffle w/modified HFS was able to reduce the job comple-
tion time for both jobs. The performance gain depends on the
amount of shuffled data in these co-running jobs.

However, iShuffle had poor performance with workload
mix tera-sort + k-means. We ran tera-sort with a 300 GB data-
set and k-means with a 15 GB dataset. The result of k-means
does not agree with previous observations for shuffle-light
workloads. The co-running of tera-sort and k-means signifi-
cantly degraded the performance of tera-sort. An examina-
tion of the execution trace revealed that although k-means
has little data to exchange between map and reduce, it is
compute intensive. iShuffle started k-means earlier than tera-
sort and k-means occupied the reduce slots for a long time
delaying the execution of tera-sort. The culprit was that for
k-means, the partition size is not a good indicator of the exe-
cution time of its reduce tasks. Thus, iShuffle failed to bal-
ance the reduce workload on multiple nodes. A possible
solution is to detect such outliers earlier and restart them on
different nodes. Since such outliers often have small shuffle
volume, the migration is not expensive.

4.10 Performance of Recovery Reduce Tasks

We manually injected a failure at different progress of a
reduce task and measured the recovery time of this reduce.
Fig. 17 shows the recovery time of Hadoop and iShuffle.
Note that the input of a reduce task can be on the local disk,
on a remote node, or unavailable. When the reduce input is

available on either the local disk or a remote node, the
recovery time of a reduce task in iShuffle is significantly
shorter than that in Hadoop. In the case of the reduce input
is on a remote node, the recovery time also includes the
time to copy data from a remote node to the local disk.
When the reduce input is not available, iShuffle needs to
perform reshuffling to create the missing reduce input,
which falls back to the same recovery model as Hadoop.

5 RELATED WORK

YARN [30] is the second generation of Hadoop. It introdu-
ces container for better resource management in large
Hadoop clusters. However, it does not have proactive shuf-
fle like Shuffle-on-Write nor the ability to dynamically
assign data partitions to different reduce tasks.

A number of studies proposed different task scheduling
algorithms to improve Hadoop performance. The Longest
Approximate Time to End (LATE) scheduling algorithm [37]
improved the job performance in heterogeneous environ-
ments. FLEX [35] is a scheduling algorithm that enforces
fairness between multiple jobs in a Hadoop cluster. It opti-
mized the performance of each job under different metrics.
Zaharia et al., proposed delay scheduling [36] as an
enhancement to Hadoop Fair Scheduler. It exploited data
locality of map task and significantly improved perfor-
mance. Ghodsi et al. proposed dominant resource fair-
ness [18] for fair resource allocation that considers multiple
resource types. Wang et al. proposed preemptive task
scheduling for Hadoop [34]. It is able to preempt long run-
ning reduce tasks to ensure fairness. It picks preemptee by
the remaining work of each task. It does not consider the
impact on number of reduce task waves, which can signifi-
cantly increase the job completion time.

There are a few studies on skew mitigations and balanc-
ing workloads [7], [16], [20], [21], [24], [27], Tarazu balances
the workload using data repartitioning [7]. It repartitions
the intermediate data and distributes the workload of
reduce phase to meet the performance difference of hetero-
geneous clusters. PIKACHU focuses on achieving optimal
workload balance for Hadoop [16]. It presents guidelines
for the trade-offs between the accuracy of workload balanc-
ing and the delay of workload adjustment. SkewReduce [20]
alleviated the computational skew problem by applying a
user-defined cost function on the input records. Partitioning
across nodes relies on this cost function to optimize the data
distribution. SkewTune [21] proposed a framework for

Fig. 16. Perf. of job mix of tera-sort and inverted-index.

TABLE 1
Job Completion Time of Co-Running Jobs

Workload Mix Stock Hadoop iShuffle

A + B A B A B

tera-sort + grep 2,210 s 1,247 s 2,144 s 1,038 s

tera-sort + histogram-
ratings

2,308 s 653 s 1,976 s 530 s

tera-sort + term-vector 2,576 s 2,183 s 2,349 s 1,845 s
tera-sort + wordcount 2,341 s 1,433 s 2,126 s 1,197 s
tera-sort + k-means 1,723 s 3,764 s 3,685 s 3,748 s

Fig. 17. Recovery task completion time for reduce tasks.
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skew mitigation. It repartitioned the long tasks to take
advantage of idle slots freed by short tasks. But, moving
repartitioned data to idle nodes requires extra I/O.

Some recent work focused on the improvement of
shuffle and reduce. MapReduce Online [12] proposed a
push-based shuffle mechanism to support the online
aggregation and continuous queries. ShuffleWatcher [6]
proposed a scheduler that help shaping the shuffle traffic
based on network load. Themis [26] employed a novel job
workflow for MapReduce that aims to minimize the disk
I/O operations. It implement the shuffle in the map phase
and saves unsorted intermediate data in disk. But, it only
hides the cost of data movement. The sorting of interme-
diate data still poses delay in reduce phase. The shuffle
service in iShuffle handles both the data movement and
the sorting in shuffle, and completely overlap the shuffle
phase with the map phase. MaRCO [8] overlaps the
reduce and shuffle. But the early start of reduce generates
partial reduces which could be the source of overhead for
some applications.

6 CONCLUSION

Hadoop design poses challenges to attain the best perfor-
mance in job execution due to tightly coupled shuffle and
reduce, partitioning skew, and inflexible scheduling. In this
paper, we propose iShuffle, a novel user-transparent shuffle
service that provides optimized data shuffling to improve
job performance. It decouples shuffle from reduce tasks and
proactively pushes data to be shuffled to Hadoop node via
a novel shuffle-on-write operation in map tasks. iShuffle fur-
ther optimizes the scheduling of reduce tasks by automatic
balancing workload on multiple nodes with flexible reduce
dispatching and preemptive reduce scheduling. We imple-
mented iShuffle as a configurable plug-in in Hadoop and
evaluated its effectiveness on a 32-node cluster with various
workloads. Experimental results show that iShuffle is able
to reduce job completion time by as much as 29.6 percent in
representative benchmarks. iShuffle also significantly
improves job performance in a multi-user Hadoop cluster
by as much as 34 percent in Facebook workload trace.
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